Appendix 9.1 Laois - Kilkenny Reinforcement Project - Coolnabacky 400kV Substation and Ballyragget 110kV Substation - Factual Report on Ground Investigation

A. Report No. Y2012-12A for Coolnabacky 400kV Substation

B. Report No Y2012-12B for Ballyragget 110kV Substation

Report No Y2012-12A

LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY 400kV SUBSTATION:

FACTUAL REPORT ON GROUND INVESTIGATION

Carried out for: EirGrid

Engineer: ESB International

July 2012

Soil Mechanics

Geotech Specialists Ltd Carewswood Castlemartyr County Cork Tel: +353 (0) 21 466 7164 Fax: +353 (0) 21 466 7630 email: cork@geotech.ie

Soil Mechanics part of Environmental Scientifics Group

LAOIS KILKENNY REINFORCEMENT PROJECT – COOLNABACKY 400kV SUBSTATION

FACTUAL REPORT ON GROUND INVESTIGATION

Report No: Y2012-12A Date: July 2012

Employer:

Engineer:

EirGrid The Oval 160 Shelbourne Road Ballsbridge Dublin 4 ESB International Stephen Court 18/21 St Stephen's Green Dublin 2

Issue No	Date	Details
1	July 2012	Report as submitted

The title to this report is vested in the Employer named but title to copyright is retained. The Contracts (Rights of Third Parties) Act 1999 does not apply to the contract with the Employer and the provisions of the said Act are hereby excluded.

CONTENTS

		Page				
1	INTRODUCTION					
2	THE SITE AND GEOLOGY2.1The Site2.2Published Geology	2				
3	FIELDWORK3.1General3.2Exploratory Holes3.3In Situ Testing	3				
4	LABORATORY TESTING4.1 Geotechnical Testing4.2 Geoenvironmental Testing	5				
	REFERENCES	6				
	TABLES					

1 Exploratory Holes Levels and Coordinates

ENCLOSURES

- A EXPLORATORY HOLE RECORDS
- B IN SITU TESTING
- C GEOTECHNICAL LABORATORY TEST RESULTS
- D GEOENVIRONMENTAL LABORATORY TEST RESULTS
- E PHOTOGRAPHS
- F SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT
- G DRAWINGS

1 INTRODUCTION

In February 2012 Soil Mechanics (SM) was commissioned by ESB International (ESBI), on behalf of EirGrid, to carry out a ground investigation at Coolnabacky, County Laois. The investigation was required to obtain geotechnical and geoenvironmental information for a proposed 400kV substation development.

The scope of the investigation, which was specified by ESBI, comprised cable percussion boreholes, trial pits, in situ testing and laboratory testing. The investigation was carried out in accordance with the contract specification, Eurocode 7 and relevant related standards identified below (see also References). The fieldwork was carried out between 7 March 2012 and 21 March 2012.

This report presents the factual records of the fieldwork and laboratory testing.

A soil characterisation and Soil Suitability Assessment Report was carried out by Traynor Environmental Ltd (Ref 12.050 TE, dated 28 March 2012) and is presented in Enclosure F.

2 THE SITE AND GEOLOGY

2.1 The Site

Coolnabacky is situated approximately 2.5km north of Timahoe, County Laois, see Site Location Plan in Enclosure G. The site is at National Grid reference S 928 537.

The site consists of a large roughly rectangular field where the proposed substation is planned and another field through which the proposed site access route is planned. The site area is level and is presently being used as agricultural land. The access route rises towards the south west over its length by about 15 m. The field where the substation is planned was short grass while the proposed access route was through a newly ploughed arable field. The fields were separated by deep ditches containing water and mature trees. The site is bordered by a disused quarry to the south and agricultural land in all other directions.

2.2 Published Geology

The published geological map covering the site, GSI Sheet 16, shows the bedrock in the area to be the Ballyadams Formation comprising crinoidal wackestone and packstone limestone.

3 FIELDWORK

3.1 General

The fieldwork was carried out in general accordance with BS 5930+A2 (2010), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole and in situ test locations were selected by ESBI. The locations were set out by SM approximately to the supplied co-ordinates. The co-ordinates and reduced levels were subsequently resurveyed by SM to Irish National Grid and Ordnance Datum. Table 1 presents a summary of the levels and coordinates of the exploratory positions both to ITM and Irish National Grid.

The exploratory hole and in situ test locations are shown on the Site Plan in Enclosure G.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

ТҮРЕ	QUANTITY	MAXIMUM DEPTH (m)	REMARKS		
Cable Percussion Boring	10	8.50	Designated BH1 to 10		
Trial Pits	15	3.00	Designated SA1 to 3 and TP1 to TP12 Machine dug		

SUMMARY OF EXPLORATORY HOLES

The exploratory hole records are presented in Enclosure A and should be read in conjunction with the Key which is included in that enclosure. The records provide descriptions of the materials encountered in accordance with BS 5930 (1999) without amendment. BS EN ISO 14688-1 (2002) and 14689-1 (2003), for soils and rocks respectively, as amplified by BS 5930+A2 (2010). The

records also give details of the samples taken together with observations made during boring and pitting. Photographs of the trial pits are presented in Enclosure E.

On completion of the fieldwork the samples were placed in sealed containers and transported to the Cork office of Soil Mechanics for temporary retention in secure frostproof premises. Samples required for geotechnical testing were subsequently transferred to the in-house laboratory on receipt of the Client's testing instructions. Geoenvironmental samples were transported from site directly to the ESG Scientifics laboratory.

3.3 In Situ Testing

In situ testing was carried out in accordance with the relevant standards as tabulated below. The testing is summarised in the following table and the results are presented in Enclosure C unless noted otherwise. A calibration certificates for the SPT hammer is included with the results of the SPTs in Enclosure A.

TYPE	QUANTITY	REMARKS
Standard Penetration Test	59	BS EN ISO 22476-3 (2005). Results presented on logs in Enclosure A
Dynamic Cone Penetration 15		Completed by Dynamic Cone Penetration Test BS 1377 (1990) with
Test (DCP's)	15	calculated CBR values
EPA Percolation Test		Completed by Traynor Environmental presented in Enclosure F
Soakaway	3	BRE Digest 365 (2007)

SUMMARY OF IN SITU TESTING

4 LABORATORY TESTING

4.1 Geotechnical Testing

The testing was scheduled by ESBI and was carried out in accordance with BS 1377 (1990). The testing is summarised below and the results are presented in Enclosure C.

ТҮРЕ	REMARKS
Moisture Content Determination	19 no
Atterberg Limit Determination	16 no
Particle Size Distribution Analysis	13 no

ТҮРЕ	REMARKS
n Lond Water Colubia Suinheta Content of Spila	11 tests. Test methods are BS 1377 or others recognised in BRE
pH and Water Soluble Sulphate Content of Soils	Special Digest 1 (2005); they are indicated on the results report
	sheets in Enclosure < <d>>.</d>
Unconsolidated Undrained Triaxial Compression Testing	1 no

4.2 Geoenvironmental Testing

The testing was scheduled by ESBI and was carried out by ESG Scientifics. The results are presented in Enclosure E.

Prepared By	Alex Orrell BSc				
Reviewed By	M N Harris BSC MSC DIC CEng MICE FGS				
Approved for Issue By					

REFERENCES

BRE Digest 365 : 2007 : Soakaway design. Building Research Establishment, Garston, Watford.

- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS 5930 : 1999 : Code of practice for site investigations. British Standards Institution.
- BS 5930+A2 : 2010 : Code of practice for site investigations (Amendment 2). British Standards Institution.
- BS EN 1997-2 : 2007 : Eurocode 7 Geotechnical design Part 2 Ground investigation and testing. British Standards Institution.
- BS EN ISO 14688-1 : 2002 : Geotechnical investigation and testing Identification and classification of soil Part 1 Identification and description. British Standards Institution.
- BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution. British Standards Institution.
- BS EN ISO 22476-3 : 2005 : Geotechnical investigation and testing Field testing Part 3 Standard penetration test. British Standards Institution.
- GSI Geology of Kildare Wicklow Sheet 16 : 1994. 1:100 000 geological map (solid). Geological Survey of Ireland

OSI Discovery Series Sheet 55: 1996 First Edition. 1:50 000 Ordnance Survey of Ireland.

TABLE 1 : EXPLORATORY HOLES LEVELS AND COORDINATES

	I.T.M.			Irish National Grid		
Deline ID	Easting	Northing	Level	Easting Northing		Level
Point ID	(m) (m)		(mOD)	(m)	(m)	(mOD)
BH-01	653730.67	692898.79	99.66	253791.82	192863.22	99.66
BH.02	653754.75	692921.31	98.45	253815.92	192885.74	98.45
BH.03	653774.70	692922.08	98.27	253835.87	192886.51	98.27
BH.04	653789.81	692940.62	98.17	253850.98	192905.06	98.17
BH-05	653712.52	692938.97	98.90	253773.68	192903.41	98.90
BH-06	653734.32	692954.80	98.58	253795.48	192919.24	98.58
BH-07	653759.87	692970.81	98.39	253821.03	192935.25	98.39
BH-08	653694.68	692966.94	98.92	253755.83	192931.38	98.92
BH-09	653718.84	692981.19	98.75	253780.00	192945.64	98.75
BH-10	653737.73	692998.07	98.55	253798.89	192962.52	98.55
SA-01	653735.74	692861.89	98.85	253796.90	192826.31	98.85
SA-02	653853.95	692943.02	97.52	253915.14	192907.46	97.52
SA-03	653831.91	692775.11	97.90	253893.09	192739.51	97.90
TP-01	653664.19	692955.15	99.13	253725.33	192919.59	99.13
TP-02	653745.33	693013.31	98.37	253806.49	192977.76	98.37
TP-03	653782.00	692963.62	98.31	253843.16	192928.06	98.31
TP-04	653700.19	692907.17	99.46	253761.34	192871.60	99.46
TP-05	653736.53	692945.56	98.53	253797.69	192910.00	98.53
TP-06	653658.96	692878.73	99.25	253720.10	192843.16	99.25
TP-07	653622.65	692851.93	99.63	253683.78	192816.35	99.63
TP-08	653591.84	692829.08	99.74	253652.97	192793.49	99.74
TP-09	653532.01	692795.09	100.80	253593.12	192759.49	100.80
TP-10	653482.02	692759.57	102.21	253543.12	192723.96	102.21
TP-11	653444.60	692722.42	104.21	253505.69	192686.80	104.21
TP-12	653171.09	692421.67	113.44	253232.12	192386.00	113.44
DCP/CBR-01	653249.82	692491.13	109.71	253310.87	192455.47	109.71
DCP/CBR-02	653274.99	692522.00	109.27	253336.05	192486.35	109.27
DCP/CBR-03	653294.66	692544.89	108.96	253355.72	192509.24	108.96
DCP/CBR-04	653313.31	692567.39	109.00	253374.38	192531.75	109.00
DCP/CBR-05	653332.53	692590.09	109.38	253393.60	192554.45	109.38
DCP/CBR-06	653350.49	692610.83	109.30	253411.56	192575.19	109.30
DCP/CBR-07	653368.55	692632.25	108.66	253429.63	192596.62	108.66
DCP/CBR-08	653385.39	692652.70	108.15	253446.47	192617.07	108.15
DCP/CBR-09	653403.26	692674.52	107.57	253464.34	192638.90	107.57
DCP/CBR-10	653421.10	692696.16	106.03	253482.19	192660.54	106.03

ENCLOSURE A EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Hammer Energy Report

Borehole Logs Trial Pit Logs Key Calibration certificate DP1 BH1 to 10 SA1 to SA3 and TP1 to 12

Key to Exploratory Hole Records

SAMPLES

UNIT Driven table sample	SAMPLES							
UT Driven thin wall labe sample P	Undisturbed		~					
Two Puncted this wall tube sample P Durated this wall tube sample L C. L. Liner sample (from Whooless or similar sampler), full recovery unless otherwise stated Biok sample Biok sample Common Sample Small sample Biok sample Small sample Biok sample Small sample Biok sample Small sample Biok sample Small sample Common Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was made to take a table sample, however, three was no recovery. Common Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was made to take a table sample, however, three was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FIFTS ST or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) Monitor the full 300 mm test dive is achieved the total number of blows count are given in the Field Records column: cach incomend is 7m mm takes stated dhreines and any service take is given in the field Records (C). Monitor the V = prohe. Wire in advance shear strength, pask (p) and remoulded (p) PM — In the Test column. Where the tab tab blows count beyond the setting drive is given in the counture of the stest drive blows count beyond the setting drive is given					and a state of			
P Puncted platon sample Low constructions and the construction of				nominally 100 mm diameter and full recovery unless other	wise stated			
Line sample (from Windowies or similar sampler), full recovery unless otherwise stated CBR code Sample (from rotary core) taken for laboratory testing AMAL Analgemated sample Disturbed Bit sample Disturbed Bit sample Disturbed Bit sample Other Water sample G Gas sample Comments Environmental chemistry samples (in more than one container where appropriate) Extreme Sold sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FESTS SPT or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration met at its officine in the ST from unless attated otherwise and any penetration under sative split in min (SW) in noted. Where the full Stom mutes sated to bake a sate strengt, pack (D) and mater drive is a being for its or its is gene (Wintom Ket W = prefix). [SW] Prefix difference (D) and test drive is a being for packer inflow; results provided in Field Records column, where the stat drive bias strength, pack (D) and test drive is a being for packer test). [SW]								
Bit K BioC SMAL Care sample from care y care) taken for laboratory testing AMAL A malgamated sample Barban But sample Barban But sample Barban But sample Barban But sample Conservation Barban Conservation Barban Marban Care sample Conservation Barban Conservation Care sample Conservation Sample reference of NR* indicates that attempt was made to take a tube sample. however, there was no recovery. Montoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FSTS Sandard Penetration Test, open shoe (S) or sold cone (C) The Bardard Penetration Test, open shoe (S) or sold cone (C) The Bardard Penetration Test is defined in BS EM 160 52745 2020). The incernerated blow counts are given in the fold reduce counts: sold microarding is 25 mm unless stated of thereads and there sample reference of NR* indicates that attempt was Name is a state of the take and there is given in the fold reduce counts: sold microarding is 25 mm unless stated of theread hore for the sample sold for the sample is given in the fold reduce count is an given in the sample reference of NR* indicates that attempt was Name is a state of the sold more for the sample sold for the same difference is a state of the test and the number of base state of the same difference is a state of the test and the same state of the is a divers is given in the fold within the same state of the same di				or similar sampler), full recovery unless otherwise stated				
SMAL Crose sample (from trotary core) taken for laboratory testing AMAL Amalgiamed sample Disturbed B B Small sample B Buck sample Commental chemistry samples (in more than one container where appropriate) E Environmental chemistry samples (in more than one container where appropriate) E Environmental chemistry samples (in more than one container where appropriate) E Environmental chemistry samples (in more than one container where appropriate) E Environmental chemistry samples (in more than one container where appropriate) E Environmental chemistry samples (in more than one container where appropriate) E Mark that a tube sample in however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FETS PTS or SPTC Standard Penetration Test is defined in BS EN ISO 22478-3 (2005). The incremental blow counts are given in the Field Records column, where the test drive blows reach 50 the total under of blows for the test drive blows freach 50 the total blow count beyond the seating drive is given (without the same strength, peak (p) and remoulded (r) FW Iso 300 and remover test drive blows reach 50 the total blow count are given in the Field Records column (ne value per stage tor packer tests) PHLLING RECORDS Environmental there are strength, peak (p) and remoulded (r) RCH, RH, RP,			nple					
MAL Analgamized sample Districted B Small sample B Districted B Built sample B Other W Water sample G Comments Environmental chemistry samples (in more than one container where appropriate) ENV EV Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was made to take a tube sample. Nowing samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test, open shoe (S) or sold core (C) The Standard Penetration Test is defined in BS EN ISO 224763 (2005). The incemental blow counts are given in the Field Records country, each increment in 57 mm unless stated chromosities and any method is presented as N = "" in the Test colum.", Where the test difficult presented is the sample of bows for the test divice is presented as N = "" in the Test colum.", Where the test divice blows reach 50 the total number of bows for the test divice is given in the (without the N = prefix). IV in situ Vane shear steergith, peak (p) and remoulded (r) Here Hard vane shear steergith, peak (p) and remoulded (r) Here Hard vane shear steergith, peak (p) and remoulded (r) Here Hard vane shear steergith, peak (P) and remoulded (r) Here KH, KRH, KPI V r in situ Vane shear steergith, peak (P) and remoulded (r) Here KH, KRH, KPI Permeability tests (KPH = Tailing head, KPH = raing head; KPI = packer inflow); results provided in Field Records column (one value per stage for packer test). Distant andices (TCRSCRRQD & I) are defined in B								
Disturbed B Section 1 Disturbed B Buik sample B Disturbed B Suit a sample B Disturbed B Wafer sample B Disturbed B Convention B B Soit sample B Convention B Soit sample B				aken for laboratory testing				
Description Small sample B Bulk sample We be able to the sample Gas sample Construction Gas sample Construction Solid sample EXP Solid sample EXP Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test is defined in BS EN ISO 224763 (2005). The incremental blow counts are given in the Field Records columin, each there the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive is bars reach 50 the total blow count beyond the seating drive is given (Whout the N = prefx). Without the N = prefx). Emperatorementer test. Converted to share strengt KPH, KRH, KRI = RE column. Where the test drive is apple reference in Field Records Column (new value per stage for packer tests) Column (new value per stage for packer tests) Column (new value per stage for packer tests) Column (new scale mather th		Anaganated 5	ampie					
B Bulk sample Other We will be a sample We will be a sample We will be a sample Comments Comments chamistry samples (in more than one container where appropriate) Existion methal chamistry samples (in more than one container where appropriate) Existion will be a sample reference numbers are assigned to every sample taken. A sample reference of "NR" indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FIRST SPT S or SPT C Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is for mm unless stated otherwise and any penetration under self weight in mm Field Records column; where the test drive blows reach 50 the total blow count beyond the seating drive is given (without the N = perfix). IV in the Test column. Where the test drive blows reach 50 the total blow count beyond the seating drive is given (without the N = perfix). IV in statu Vane shear strength, peak (p) and remoulded (r) Hy REP Active Test Strength peak (p) and remoulded (r) Column (wine value per strange for packer tests) Descent Econoccurre coveres (covered (stratas) Revert stratage target (R) (R) = packer inflow); results provided in Field Records column; byical and maximum spacings are presented. The	Disturbed							
<text> Mode Materia sample We may any properties of the sample Environmental chemistry samples (in more than one container where appropriate) We may any properties of the sample Environmental chemistry samples (in more than one container where appropriate) Contents Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was measure the avea no recovery. Contents Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was measure the avea no recovery. Contents Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was measure the avea no recovery. Contents Sample reference numbers are assigned to every sample taken. A sample reference of NR indicates that attempt was measure taken atter completion of hole construction are not shown on the exploratory hole logs. FTS of SPT C Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column, where the test drive is achived the total number of blows for the tas drive is given (Without the * prefix) We mechanical indices (TCR/SCR/ROD & H) are defined in BS 5930+42 (2016) Pare in the Test column. Where the test drive is basis tereng fix. More instructure setimated period grive is farghmentide. More instructure setimated period grive is farghmentite. Collorn (one value per</text>								
Witten Water sample G Gas sample Environmental chemistry samples (in more than one container where appropriate) Exercise EW Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was made to take a tube sample, however, there was no recovery. Montoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FETS PTS or SPTC Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column, each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is included. Where the full 300 om test diver is achived the total number of blows for the test drive is given to (Witout Were a state attempt), paak (I) and removaled (I) W // and was eshara stampt), paak (I) and removaled (I) PM // and was eshara stampt), paak (I) and removaled (I) PM // and was eshara stampt), paak (I) and removaled (I) PM // and was eshara stampt), paak (I) and removaled (I) PM // and was eshara stampt), paak (I) and removaled (I) PM // and was eshara stampt), paak (I) and removaled (I) PM Peretration Recovery, % SCHLING RECORDE If are defined	В	Bulk sample						
G Gas sample Environmental chemistry samples (in more than one container where appropriate) Espanse Soil sample reference of NR* indicates that attempt was made to lake a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TERIS SPT S or SPT C Standard Penetration Test, open shoe (S) or sold cone (C) The Standard Penetration Test is defined in BS ENISO 22475-3 (2005). The incremental blow counts are given in the region forecome to the Test of them transes stated otherwise and any ponetration under sol weight in mm region from these stated otherwise and any ponetration under sol weight in mm region from these stated otherwise and any ponetration under sol weight in mm region the Test output to the Test output to the Test output to the scattered otherwise and program the seating drive is given in the Test output the Test output to the State state output to the seating drive is given in the Test output to the State state output to the test drive is output	Other							
Matrix Status Events Events Soli sample Events Soli sample Events Soli sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR' indicates that attempt was made to take a tube sample, however, there was no recover? Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. FIRST SPT Sor SPT C Standard Penetration Test, open shoe (S) or solid cone (C). The Standard Penetration Test, open shoe (S) or solid cone (C). The Standard Penetration Test, open shoe (S) or solid cone (C). Without the N = prefix). Where the full 300 mm test dive is achieved the total blow count beyond the seating dive is given. Without the N = prefix). Prefix). Without the N = prefix). Prefix). Man vane shear strength, peak (p) and remoulded (f) Premeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records. Column (one value per stage for packer tests) Prefix Advect the take at one flow of the space flow is presented as the redine in BS 5930+A2 (2010). The mechanical indices (TCRISCPIRQD & II) are defined in BS 5930+A2 (2010). The test advect the test or informet the core is firgemented. Tests returns, estimated percentage with colour where relevant, are given in the Records	W	Water sample						
ES Soli sample EW Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR' indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records colum; each increment is 75 mm unless stated otherwise and any penetration under soft weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total home count beyond the sealing drive is given (without the N = prefix). V A mature shear strength, peak (p) and remoulded (r) PP Procesch pretromer reteast strength, peak (p) and remoulded (r) PP Procect pretromerer tests DRILLING RECORDS Prementioner on table strength Peak (RH + rising head; KPI = packer inflow); results provided in Field Records colum, (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % Segmented Segmented The result pesignation, % If Core recovered (length in m) in the following run Accid column Segmented column (see tree core is firgemeted. The result pesignation, % Th	G	Gas sample						
ES Soil sample EW Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR' indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records coum; each increment is 75 mm unless stated dotherwise and any penetration under soft weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is gresented as N = ** in the Test column. Where the test drive is on mice drive is griven in the Test column. Where the state inverse blave standing? V In a flat take a tube sample, pack (p) and remoulded (r) PP Predict Records Colum; each strength. pack (p) and remoulded (r) PP Predict Records Colum; each strength. pack (p) and remoulded (r) PP Predict Records Colum; each strength. pack (p) and remoulded (r) PP Predict Records Colum; each strength. Pack (P) and remoulded (r) PP Predict Records Colum; each strength. Pack (P) and remoulded (r) PP Predict Records Colum; each strength. Pack (P) and remoulded (r) PP Predict Records Colum; face defined in BS 5930+A2 (2010) TCR		- · · · ·						
EW Water sample EM Water sample Comments Sample reference numbers are assigned to every sample taken. A sample reference of NR' indicates that attempt was made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test, open shoe (S) or sold cone (C) The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column: each increment is 75 mm unless stated otherwise and any penetration under self weight in mm. (SW) is noted. Where the full 300 mm test of twice is achieven the total number of blows for the test drive is prevented as N = **' in the Test column. Where the test drive is achieven the total number of blows for the is prevented as N = **' in the Test column. Where the test drive is achieven the total number of blows for the set at five is prevented as N = **' in the Test column. Where the test drive is achieven the colum beyond the seating drive is given (without the N = pefix). IV H and vane shear strength, peak (p) and remoulded (f) HV H and vane shear strength, peak (p) and remoulded (f) EVP Pocket penetrometer tests. DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & if) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % SCR Core recovered (ength in m) in the following run non-indact (NI) is used where the core is fragmented.	ES		chemistry sample	es (in more than one container where appropriate)				
Comments Sample reference numbers are assigned to every sample taken. A sample reference of 'NR' indicates that attempt was made to take a tube sample, however, there was no recovery. Tests Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. Tests Set S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) Open control of the records column: each increment is 75 mm unless stated of betwise and any penetration under self weight in mm. for 8 r ⁺ in the Test column. Where the test drive blows reach 50 the total blow count beyond the seating drive is given (without the N = perfix). V In situ Vane shear strength, peak (p) and remoulded (f) PP Pocket penetrometer test, converted to shear strength RH, KRH, KPI Pemechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) Time rechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) Time section Recovery, % Sig SCR Sold Core Recovery, % SCR Sold Core Recovery, % SCR Core recovered (length in m) in the following run Account (one value per stage for packer tests) The test standard percentage with colour where relevant, are given in the Records column Core recovered								
made to take a tube sample, however, there was no recovery. Monitoring samples taken after completion of hole construction are not shown on the exploratory hole logs. TESTS SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is given (Without the N = prefix). W in <i>situ</i> Vane shear strength, peak (p) and remoulded (f) HY Hand vane shear strength, peak (p) and remoulded (f) HY HAID vane shear strength, peak (p) and remoulded (f) HY HAID vane shear strength, peak (p) and remoulded (f) HY HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE HAID vane shear strength, peak (p) and remoulded (f) HY HONE VALUE HIDE HAID vane shear strength, peak (p) and remoulded (f) HY HONE VALUE HIDE HAID vane shear strength, peak (P) and remoulded (f) HY HONE VALUE HIDE HIDE HIDE HIDE HIDE HIDE HIDE HID	2							
Terms First or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) Genet Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test, open shoe (S) or solid cone (C) Genet Standard Penetration Test, open shoe (S) or solid cone (C) (W) is noted, Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = "th in the Test column. Where the test affore is state of them test and up penetration under self weight in mm (W) without the N = prefix). Image: Standard Penetration Test, open shoe (S) and remoulded (r) Preset penetrometer test, converted to shear strength. Preset penetrometer test, converted to shear strength. CHLING RECORDS The Mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) Creating action the test drive biolowing run Recell and core Recovery, % Solid Core Recovery, % Solid Core Recovery, % Solid Core Recovery, % <td colspan<="" td=""><td>Comments</td><td></td><td></td><td></td><td>ndicates that attempt was</td></td>	<td>Comments</td> <td></td> <td></td> <td></td> <td>ndicates that attempt was</td>	Comments				ndicates that attempt was		
SPT S or SPT C Standard Penetration Test, open shoe (S) or solid cone (C) The Standard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm. (Si) is noted. Where the full 300 mm test drive is achieved the total alumber of blows for the test drive is prosened as N = ** in the Test column. Where the test drive blows reach 50 the total blow count beyond the seating drive is given (without the N = prefix). V in situ Vane shear strength, peak (p) and remoulded (r) PM Hard vane shear strength, peak (p) and remoulded (r) PM Pocket penetrometer test, converted to shear strength REH, KPI Permetability tests (KPH + aliang heads, KPI = packer inflow); results provided in Field Records Column (one value per stage for packer tests) Pocket penetrometer test, converted to shear strength Marce CordDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010). TY Tracture spacing, mm. Minimum, typical and maximum spacings are presented. The term mon-intact (NI) is used where the core is fragmented. REF Core recovered (length in m) in the following rule. Marce Total Core Recover; % Sesseed zone of core loss. Na Na recorute spacing, mm. Minimum, typical and maximum spacings are presented. The term Marce Total Core Recover; % <td></td> <td>Monitoring sam</td> <td>ples taken after o</td> <td>completion of hole construction are not shown on the explorat</td> <td>ory hole logs.</td>		Monitoring sam	ples taken after o	completion of hole construction are not shown on the explorat	ory hole logs.			
Interstandard Penetration Test is defined in BS EN ISO 22476-3 (2005). The incremental blow counts are given in the Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the total number of blows for the test drive is given (without the N = prefix). IV in situ Vane shear strength, peak (p) and remoulded (r) PH Hard vane shear strength, peak (g) and remoulded (r) PP Pocket penetrometer test, converted to shear strength KFH, KRH, KPI Permeability tests (KHFH = falling head, KFH = rising head; KFI = packer inflow); results provided in Field Records column (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Robe duality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (Ni) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF CAP Core recovered (length in m) in the following run AZCL Assessed zone of core loss NR Not recovered Groundwater level after standing	TESTS							
Field Records column: each increment is 75 mm unless stated otherwise and any penetration under self weight in mm (SW) is noted. Where the full 300 mm test drive is achieved the total number of blows for the test drive is presented as N = ** in the Test column. Where the test drive blows reach 50 the total number of blows for the test drive is given (without the N = prefix). IV in situ Vane shear strength, peak (p) and remoulded (r) HY Hand vane shear strength, peak (p) and remoulded (r) PM Hand vane shear strength, peak (p) and remoulded (r) PM Portect penetrometer test, converted to shear strength RFH, KRH, KPI Permeability tests (KFH = falling head, KFH = rising head; KFI = rising head; KFI = rising head; KFI = rising head; KFI = packer inflow); results provided in Field Records Column (one value per stage for packer tests) The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SGR SCR Solid Core Recovery, % Solid Core Recovery, % SCR Solid Core Recovery, % Solid Core Recovery, % SCR Solid Core Recovery, % Solid Core Recovery, % SCR Solid Core Recovery, % Solid Core Recovery, % SCR Core recovered (length in m) in the following run Azol Nuel revelage with colour where relevant, are given in the Records column CRC Core r	SPT S or SPT C	Standard Penet	ration Test, oper	n shoe (S) or solid cone (C)				
Without the N = prefix). Image: Standard Stand		Field Records column; each increment is 75 mm unless stated otherwise and any penetration under self weight in mm						
HV Hand vane shear strength, peak (p) and remoulded (r) PP Pocket penetrometer test, converted to shear strength KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records column (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-initact (NII) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered Groundwater strike Groundwater strike V Groundwater level after standing period		(without the N =	prefix).		e seating drive is given			
PP Pocket penetrometer test, converted to shear strengtin KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records column (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER Groundwater strike ▼ Groundwater level after standing period Test test for full references of standards Project LADIS KILKENNY REINFORCEMENT PROJECT - COOLNACEACKY Key								
KFH, KRH, KPI Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records column (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER Groundwater strike ▼ Groundwater level after standing period Meter Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLINACBACKY Project No. Y203-12a Key								
column (one value per stage for packer tests) DRILLING RECORDS The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered Groundwater strike ✓ Groundwater level after standing period Yeise: No. Y2012-12a Carried out for Field Key		Permeability tests (KFH = falling head, KRH = rising head; KPI = packer inflow); results provided in Field Records						
The mechanical indices (TCR/SCR/RQD & If) are defined in BS 5930+A2 (2010) TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run Azcl. AZCL Assessed zone of core loss NR Not recovered GROUNDWATER Groundwater strike Groundwater level after standing period Atter terms for full references of standards								
TCR Total Core Recovery, % SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER Groundwater strike ▼ Groundwater strike P Groundwater level after standing period	DRILLING RECOR	DS						
SCR Solid Core Recovery, % RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER ▼ Groundwater strike Groundwater level after standing period	The mechanical inc	lices (TCR/SCR/R	QD & If) are defi	ned in BS 5930+A2 (2010)				
RQD Rock Quality Designation, % If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER								
If Fracture spacing, mm. Minimum, typical and maximum spacings are presented. The term non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL AZCL Assessed zone of core loss NR Not recovered GROUNDWATER Groundwater strike Groundwater level after standing period tes: ereport text for full references of standards Project No. Y2012-12a								
non-intact (NI) is used where the core is fragmented. Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL Assessed zone of core loss NR Not recovered GROUNDWATER ▼ Groundwater strike ▼ Groundwater strike ▼ Groundwater level after standing period tes: e report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid				n typical and maximum spacings are presented. The term				
Flush returns, estimated percentage with colour where relevant, are given in the Records column CRF Core recovered (length in m) in the following run AZCL Assessed zone of core loss NR Not recovered GROUNDWATER ▼ Groundwater strike ▽ Groundwater strike ○ Groundwater level after standing period Net: e report text for full references of standards Project No. Y2012-12a Carried out for Eiforid	п							
CRF Core recovered (length in m) in the following run AZCL Assessed zone of core loss NR Not recovered GROUNDWATER ▼ Groundwater strike Groundwater level after standing period >tes: se report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for Ereford Key				v				
AZCL Assessed zone of core loss NR Not recovered GROUNDWATER ▼ Groundwater strike ∇ Groundwater level after standing period Stes: the report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid	Flush returns, estin	nated percentage w	vith colour where	e relevant, are given in the Records column				
NR Not recovered GROUNDWATER Groundwater strike ▼ Groundwater strike ▽ Groundwater level after standing period Pres: he report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for Key				the following run				
GROUNDWATER ▼ Groundwater strike ▽ Groundwater level after standing period tes: e report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid								
▼ Groundwater strike Groundwater level after standing period tes: e report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for Key	NR	Not recovered						
Groundwater level after standing period Intes: Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid	GROUNDWATER							
Groundwater level after standing period Intes: Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid								
otes: se report text for full references of standards Project LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY Project No. Y2012-12a Carried out for EirGrid	▼ ₩							
ee report text for full references of standards Project No. Y2012-12a Carried out for EirGrid Key	V	Groundwater lev	vel after standing	g period				
Project No. Y2012-12a Carried out for EirGrid								
Ree report text for full references of standards Project No. Y2012-12a Carried out for EirGrid								
ee report text for full references of standards Project No. Y2012-12a Carried out for EirGrid								
Project No. Y2012-12a Key		an af atom to t	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY				
Carried out for EirGrid	ee report text for full reference	es of standards	Project No.	Y2012-12a	Kev			
Sheet 1 of 2			Carried out for	EirGrid	-			
					Sneet 1 of 2			

Key to Exploratory Hole Records

INSTALLATION

INSTALLATION							
Standpipe/ piezometer	Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.						
SP SPIE PPIE EPIE	The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone: Standpipe Standpipe piezometer Pneumatic piezometer Electronic piezometer						
Inclinometer or Slip Indicator	The installation of column.	of vertical profilin	ig instruments is	indicated on the F	Record. The base o	of tubing is shown	n in the Legend
ICE CARACINA ICM SLIP CARACINA	The type of instru- Biaxial inclinome Inclinometer tubi Slip indicator	eter		code in the Legen	d column at the ba	se of the tubing:	
Settlement Points or Pressure Cells	The installation of the Legend colure		struments is indio	cated on the Reco	rd. The location of	the measuring d	evice is shown in
ESET ETM EPCE PPCE	The type of instru- Electronic settler Magnetic extens Electronic ember Electronic push i	ment cell/gauge ometer settleme dment pressure	nt point	code in the Legen	d column:		
INSTALLATION LEGENDS	A legend describ describe the bac				n. Legends additio	nal to BS5930 a	re used to
	Arisings		Grout	Bentonite	Sand	Gravel	Macadam
NOTES 1	Soils and rocks are described in accordance with BS EN ISO 14688-1 (2002) and 14689-1 (2003) respectively as amplified by BS 5930+A2 (2010).						
2	For fine soils consistency determined in the field by the logger is reported for those strata where undisturbed samples are available. The consistency is qualified and given (in brackets) when, in the opinion of the logger, the sample is disturbed but the assessed consistency is reasonably representative of the in situ conditions; in these circumstances it will normally underestimate consistency in situ. No consistency is given where the samples available are too disturbed to allow a reasonable assessment.						
3	Evidence of the occurrence of very coarse particles (cobbles and boulders) is presented on the logs, however, because of their size in relation to the exploratory hole these records may not be fully representative of their size and frequency in the ground mass.						
4	The declination of bedding and joints is given with respect to the normal to the core axis. Thus in a vertical borehole this will be the dip.						
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures						
6	Strata legends are in accordance with BS 5930+A2 (2010).						
7	Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or overwater, or boring at a rate much faster than water can make its way into the borehole (ref BS5930+A2:2010, Clause 47.2.7). In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.						
8	8 The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.						
Notes: See report text for full references	s of standards	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNACBACKY			кү	
		Project No. Carried out for	Y2012-12a EirGrid				Key
							Sheet 2 of 2

01896 752295

Diameter d_r (mm):

Accelerometer No.1:

Accelerometer No.2:

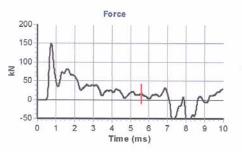
Instrumented Rod Data

Wall Thickness t_r (mm):

Assumed Modulus Ea (GPa): 208

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

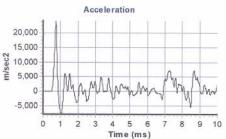

SPT Hammer Ref:	DP1		
Test Date:	20/12/2011		
Report Date:	20/12/2011		
File Name:	DP1.spt		
Test Operator:	SMCD		

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 15.8

Comments / Location

Tested in Holequest Ltd Test Facility




54

6.0

6092

6094

Velocity

Calculations

Energy Ratio E _r (%	6):	74
Measured Energy E _{meas}	(J):	352
ulcol	(J):	473
Area of Rod A (mm2):		905

0 Signed: Stewart McDowall

Title: Engineer

The recommended calibration interval is 6 months

SPTMAN ver.1.92 All rights reserved, Testconsult ©2010

Drilled DA Logged AO Checked MH	Start 14/03/2012 End	Cable percussion boring.	and Remark	ïS	Depth from to Diameter Casing Depth 0.00m 6.50m 150mm 5.80m	Ground Level Coordinates National Grid	+99.66 mOD E 653730.67 N 692898.79
	14/03/2012					Chainage	
Samples a	nd Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Backfill/ Instruments
0.00-0.30 0.10 0.30 0.30-0.80	B 1 D 2 D 3 B 4	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL. - Brown slightly clayey slightly gravelly - SAND with medium cobble content. Gravel -	(0.30) 0.30 +99.36	
- 0.90 - 0.90-1.20	D 5 B 6				is subrounded fine to coarse of limestone. Cobbles are subrounded of limestone. 0.90-1.70 m with brown mouting	(0.60) 0.90 +98.76	
- 1.20-0.00 - 1.20-1.70	SPT C B 7	N=16 (3,3/6,6,2,2)		dry	Stiff, becoming very stiff, grey sandy, becoming slightly sandy, gravelly, becoming slightly gravelly CLAY with low		
1.70-2.15	U 8	85 blows 350 mm rec			cobble content. Gravel is subangular to subrounded fine to coarse of limestone. Cobbles are subangular to subrounded of limestone.		
2.15 2.30-2.75 2.30-2.80	D 9 SPT C B 10	N=12 (1,3/3,4,2,3)					
- 2.80-3.30 - 2.80	B 11 U NR	150 blows No recovery	2.80		2.80-3.30 m brown grey slightly sandy gravel		
- 3.30-3.75 - 3.30 - 3.50	SPT S D 12 D 13	N=38 (8,15/11,8,9,10)	3.10			(5.60)	
- 3.80-4.30 	B 14 SPT C	N 00 (2 2/4 7 8 0)	4.30				
- 4.30-4.75 - 4.30-4.80 - 4.50 	B 15 D 16	N=28 (3,3/4,7,8,9)	4.30				
5.30-5.75 5.30-5.80 5.50	SPT C B 17 D 18	N=32 (4,4/6,6,10,10)	5.10				
- - 	SPT-C	······	14/03/2012 5.60 	2		6.50 +93.16	
Depth Groundwater Entri No. Struck Pc (m) None observed (s	ost strike beha		Date Casing Depth so	Time Water ealed (m)	EXPLORATORY HOLE ENDS AT 6.50 m	4.10 -4.10 3 4.90 -4.90 3	ime Tools used 0 mins 0 mins 0 mins
Notes: For explanati abbreviations see ke levels in metres. Str in depth column. Scale 1:50	ey sheet. All de ratum thickness	epths and reduced	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH1 eet 1 of 1

(c) ESG www.esg.co.uk 426.4812/07/2012 16:49:39

Scale 1:50

Soil Mechanics

Drilled DA Logged AO Checked MH	Start 15/03/2012 End 15/03/2012	Cable percussion boring.	nd Remark	S	Depth from to Diameter Casing Depth 0.00m 8.50m 150mm 8.50m	Ground Level Coordinates National Grid Chainage	+98.45 mOD E 653754.75 N 692921.31
Samples ar	nd Tests				Strata		
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
0.00		0.00-1.20 m Hand	Casing	Water	TOPSOIL -	(Thickness)	Instruments
_ 0.00-0.30 _ 0.10 - 0.30 - 0.30-0.80 	B 1 D 2 D 3 B 4 D 5	excavated inspection pit.			Light brown slightly clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is subrounded fine to coarse of various lithologies.	(0.30) 0.30 +98.15 (0.60) 0.90 +97.55	• • • • • • • • • • • • • • • • • • •
- 0.90-1.20 - 1.20-1.65 - 1.20-1.65 - 1.20	B 6 SPT S D 7 B 8	N=18 (2,4/4,5,4,5)	1.20	1.10	Stiff grey slightly sandy slightly brown moting gravelly CLAY with low cobble content of subrounded limestone. Sand is fine to brown sandy coarse. Gravel is subrounded fine to slightly gravelly carse of limestone.		
_ 1.70-2.15 _	U 9	85 blows				(1.50)	
2.15 2.20-2.65 2.40 2.40-2.80	D 10 SPT C B 11 B 12	N=30 (8,10/10,8,6,6)	2.20		Dense grey slightly clayey slightly -	2.40 +96.05 (0.40)	
- 2.80 	D 13 SPT C	50 (4,10/14,18,18 for 60mm)	3.10	1.30	of subrounded limestone. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of limestone.	2.80 +95.65	
- 3.10-3.60 	B 14	,			Very stiff grey brown slightly sandy slightly gravelly CLAY. Gravel is subrounded fine to coarse of limestone with low cobble content. Sand is fine to coarse.		
- 3.80 4.20-4.65	SPT C	N=40 (12,12/10,11,9,10)	4.20	dry			
4.20-4.70 4.80	B 16 D 17						
 - 5.20-5.65 - 5.20 	SPT C B 18	N=36 (4,5/8,8,10,10)	5.00	dry			
- 5.80 	D 19					(5.70)	
6.70-7.08 6.70-7.20 6.80	SPT C B 20 D 21	50 (6,8/11,14,14,11 for 6mm)	6.60				
7.80 	D 22						
- 8.20-8.37 -	SPT C	50 (4,10/50 for 15mm)	8.20 15/03/2012				
	SPT-C	(25-for-Omm/50-for-Omm)	8.50	dry	EXPLORATORY HOLE ENDS AT 8.50 m	8.50 +89.95	
Depth	Type & No	Records	Date Casing	Time Water			
(m)	es ost strike beha o inflow	viour	Depth se	ealed (m) 4.00	Depth Related Remarks * From to (m)	3.60 - 3.80 3	ime Tools used) mins) mins
Notes: For explanati abbreviations see ke levels in metres. Stra- in depth column. Scale 1:50	ey sheet. All de atum thickness	and pths and reduced given in brackets ESG www.esg.co.uk 26.4812/07/2012 16:49:40	Project Project No Carried ou	b .	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH2 eet 1 of 1

Soil Mechanics

Samples and Depth T 0.00-0.30 0.10 0.30 0.30 0.30-0.80 0.30-0.80 1 0.80 1 0.80-1.20 1 1.20-1.65 1.20-1.50 1.50	B1 D2 D3 B4 D5 B6	Records 0.00-1.20 m Hand excavated inspection pit.	Date Casing	Time	Strata			
Depth T 0.00-0.30 0.10 0.30 0.30-0.80 0.80 0.80 1.20-1.65 1.20-1.50	Fype & No B 1 D 2 D 3 B 4 D 5	0.00-1.20 m Hand		Time				
- 0.10 - 0.30 - 0.30-0.80 - 0.80 - 0.80-1.20 - 1.20-1.65 - 1.20-1.50	D 2 D 3 B 4 D 5		Casing	Water	Description	Depth, Level (Thickness)		ckfill/ uments
0.30 0.30-0.80 0.80 0.80-1.20 1.20-1.65 1.20-1.50	D 3 B 4 D 5	excavated inspection pit.		Water	TOPSOIL -	(0.30)		
0.80-1.20 1.20-1.65 1.20-1.50					Light brown slightly clayey slightly gravelly SAND. Sand is fine to coarse. Gravel is subrounded fine to coarse of	(0.30) 0.30 +97.97 (0.50)	• • • • • •	
1.20-1.50					various lithologies. Medium dense grey slightly clayey	0.80 +97.47	·	$\langle \rangle$
	SPT C B 7 D 8	N=16 (3,3/3,3,5,5)	1.20	0.80	slightly gravelly to gravelly SAND with medium cobble content of subrounded limestone. Sand is fine to coarse.	(0.70)	<u> </u>	$\langle \rangle$
- - 1.70-2.15 - 1.70-2.20	SPT S B 10	N=18 (1,2/7,4,3,4)	1.70	1.10	Gravel is subrounded fine to coarse of limestone.	1.50 +96.77		\mathbf{i}
1.70-2.15 2.20-2.65	D 9 U 11	100 blows	2.20	dry	Stiff becoming very stiff grey brown slightly sandy slightly gravelly CLAY with low cobble content of subangular limestone. Sand is fine to coarse. Gravel is subrounded fine to coarse of			
2.65	D 12				limestone.		° • • •	\sum
- 2.80-3.25 -	SPT C	N=18 (2,2/4,4,5,5)	2.80 15/03/2012	1800 dry	-		·	\sim
3.00-3.50 	B 13		2.80 20/03/2012 2.80	0800 dry				\mathbb{N}
- 3.50	D 14					(4.30)		$\langle \rangle$
- 3.80-4.25 - 3.80-4.30	SPT C B 15	N=31 (6,12/10,6,7,8)	3.50	dry				$\langle \rangle$
4.30-4.60	U 16	150 blows	4.10					$\langle \rangle$
4.60	D 17						· 🗧	$\langle \rangle$
- 4.80-5.25 - 4.80-5.30 	SPT C B 18	N=39 (4,6/8,10,10,11)	4.70					$\left \right $
- - 5.50 	D 19 SPT-C		20/03/2012 0.00	1800 dry		5.80 +92.47		
Depth T Groundwater Entries No. Struck Post s (m) 1 0.80 No inf		Records	Date Casing Depth se	Time Water aled (m) 3.00	EXPLORATORY HOLE ENDS AT 5.80 m		me Tools used	d
Notes: For explanation abbreviations see key s levels in metres. Stratur in depth column. Scale 1:50	heet. All dep m thickness ((c) E	ths and reduced	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH3 eet 1 of 1	

Soil Mechanics

		Equipment Marked	nd Damand					nanics
Drilled DA Logged AO	Start 13/03/2012 End	Equipment, Methods a Dando 2000. Cable percussion boring.	nu kemarks	5	Depth from to Diameter Casing Depth 0.00m 6.44m 150mm 6.20m	Ground Level Coordinates National Grid	E 6	.17 mOD 53789.81 92940.62
Checked MH	/ /					Chainage		
Samples an	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend	Backfill/ Instruments
0.00-0.30 0.10	B 1 D 2	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL.	(0.30)		\sum
- 0.30 - 0.30-0.50 - 0.50	D 3 B 4 D 5				Light brown clayey slightly gravelly - SAND. Gravel is subrounded fine to	0.30 +97.87		$\langle \rangle \rangle$
0.50	B 6				coarse of various lithologies.		· <u> </u>	$\langle \rangle \rangle$
-					Grey clayey gravelly SAND. Gravel is	(0.60)		$\left \right\rangle$
- 1.10 - 1.10	W 18 D 7				lithologies.	1.10 +97.07		$\langle \rangle \rangle$
1.20-1.65 1.20-1.70	SPT C B 8	N=16 (1,2/4,3,4,5)	1.20	dry	Firm, becoming very stiff, grey slightly sandy slightly gravelly CLAY with low		° •	$\langle \rangle \rangle$
- 1.70-2.15	U 9	150 blows 400 mm rec			becoming high cobble content. Gravel is subrounded fine to coarse of limestone.		·	$\left \right\rangle$
-					Cobbles are subrounded of limestone.		•	$\langle \rangle \rangle$
2.15 2.20-2.65	D 10 SPT C	N=19 (1,2/3,5,5,6)	2.10	dry	L		° <u> </u>	$\left \right\rangle$
_ 2.20-2.70 _	B 11			-	-		·	$\left \right\rangle$
2.70-3.15	U 12	150 blows			-		·	$\left \right\rangle $
							° •	$\left \right\rangle$
3.15 3.20-3.65	D 13 SPT C	N=29 (2,4/6,7,8,8)	3.10	dry			·	$\left[\right]$
_ 3.20-3.70 _	B 14				-		. . .	$\langle \cdot \rangle$
-						(5.34)	° •_ ¯	$\left \right\rangle$
4.00	D 15						·	$\left \right\rangle$
- 4.20-4.65 - 4.20-4.70	SPT C B 16	N=36 (4,4/6,8,10,12)	4.20	dry	1		. . -	$\langle \rangle \rangle$
-							• • -	$\left \right\rangle$
_					1		<u> </u>	$\left \right\rangle$
- 5.00	D 17				-		- -	$\langle \cdot \rangle$
-	0.57.0	50 (44 44 50 05 000)			-			$\left \right\rangle$
- 5.40-5.67 - 5.60-6.00	SPT C B 19	50 (14,11 for 25mm/ 18,20,12 for 15mm)	5.20	dry	- 5.60-6.00 m high [- °	$\left \right\rangle$
_	-				cobble content of subrounded		- - -	$\langle \rangle \rangle$
6.00	D 20				limestone		• <u>~</u>	$\left \right\rangle$
- 6.20-6.44 -	SPT C	50 (10,15 for 50mm/ 28,22 for 40mm)	6.20 13/03/2012 6.20	4.70 dry	-	0.44	<u> </u>	$\langle \cdot \rangle$
_					EXPLORATORY HOLE ENDS AT 6.44 m	6.44 +91.73		
-								
-					-			
-					-			
-								
					-			
-								
-					-	1		
-								
-						1		
_								
-			Data	Time				
Depth	Type & No	Records	Date Casing	Time Water		 		
	es st strike behav	viour	Depth se		Depth Related Remarks * From to (m)			used
(m) 1 1.10 -				(m) 1.20		5.40 -5.60 3	0 mins	
Notes: For explanation	on of symbole :	and	Broject			Borehole		
abbreviations see key evels in metres. Stra	v sheet. All der	oths and reduced	Project Project No		AOIS KILKENNY REINFORCEMENT PROJECT - ZOOLNABACKY 2012-12A		BH4	
n depth column. Scale 1:50	(c) 42	ESG www.esg.co.uk	Carried ou		zorze iza irGrid		eet 1 of 1	
	42					511		

Soil Mechanics

Logged AO Checked MH	21/03/2012 End 21/03/2012	Dando 2000 Cable percussion boring			0.00m 7.40m 150mm 7.40m	Coordinates National Grid Chainage		653712.52 692938.91
Samples an	d Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend	Backf Instrum
0.00-0.30 0.10	B 1 D 2	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL	(0.30)		\mathbb{N}
0.30 0.30-0.40	D 3 B 4				Orange brown very sandy GRAVEL.	0.30 +98.60 0.40 +98.50	• • •	
0.40 0.40-0.90	D 5 B 6				Stiff firm grey brown sandy CLAY with	-	· · ·	
					low cobble content. Gravel is subangular to subrounded fine to coarse of	-	· · ·	
- 1.00	D 7				limestone.	-	· _:-	1
1.20-1.65 1.20-1.65	SPT S D 8	N=20 (1,2/2,4,6,8)	1.20	1.20		(1.60)	<u> </u>	
1.20-1.70	B 9					-	-∹ -	
					:	-	\cdot \cdot	
- 2.00	D 10				Stiff becoming very stiff grey slightly	2.00 +96.90	· · · ·	
2.20-2.65 2.20-2.70	SPT C B 11	N=33 (2,3/4,5,8,16)	2.10		sandy gravelly CLAY with low cobble		° <u> </u>	
2.20-2.10	BII				content. Gravel is subangular to subrounded fine to coarse of limestone.	-	- °	
					Cobbles are subangular to subrounded of limestone.	-	. . -	
- 3.00	D 12					-		
3.20-3.65	SPT C	N=25 (6,6/6,5,6,8)	3.20	dry	:	-	<u> </u>	
3.20-3.70	B 13					(0.00)	· @	$ N\rangle$
3.70-4.15	U 14	150 blows				(3.00)	. . .	\mathbb{N}
	0.11	100 5,010				-	° •	
- 4.15	D 15					-	·	
4.20-4.65 4.20-4.70	SPT C B 16	N=36 (4,8/8,8,9,11)	4.00			-	- 	
						-	· ~	
						-	<u> </u>	
- 5.00	D 17				Very stiff grey brown, slightly sandy	5.00 +93.90	· · · · ·	
5.20-5.65 5.20-5.70	SPT C B 18	N=50 (7,11/14,14,22,-)	5.10	dry	slightly gravelly CLAY with low cobble content. Gravel is subrounded fine to	-	° <u> </u>	
					coarse of limestone. Sand is fine to	-	·	
					coarse.	-	. . -	
- 6.00	D 19				-	-	• • ~	$\langle \rangle$
						(2.40)	<u> </u>	
						-	· <u>~</u> ·	
6.70-7.08	SPT C	50 (4,8/11,14,16,9 for 4mm)	6.50			-		
6.70-7.20 - 7.00	B 20 D 21					-	° •_ ¯ -	
1.00	021		21/03/2012	2 1800		-	·	
7:40-7.85	SPT-C	·····N=50 (9, 12/14,17,19,-)·····	7.40			7.40 +91.50	. . -	
					EXPLORATORY HOLE ENDS AT 7.40 m	-		
-								
						-		
					:			
-								
						-		
Depth	Type & No	Records	Date	Time	:			
Groundwater Entrie		1000103	Casing	Water	Depth Related Remarks *	Chiselling	<u> </u>	
(m)	st strike beha	viour	Depth s	(m)	From to (m)	Depths (m) T 5.60 -5.80 3	0 mins	ls used
1 1.20 No	inflow			2.00		7.10 -7.40 6	60 mins	
otes: For explanatio	on of symbols	pths and reduced	Project		LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Borehole	BH5	
vels in metres. Stra								

Drilled DA Logged MMS	Start 20/03/2012 End	Equipment, Methods ar Dando 2000 Cable percussion boring	nd Remarks	5	Depth from to Diameter Casing Depth 0.00m 5.90m 150mm 5.90m	Ground Level Coordinates National Grid	+98.58 mOD E 653734.32 N 692954.80
Checked MH	20/03/2012					Chainage	11 00200 1100
Samples an	d Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, <i>Level</i> (Thickness)	Legend Backfill
_ 0.00-0.30 _ 0.10 - 0.30 - 0.30-0.60 - 0.60	B1 D2 D3 B4 D5	0.00-1.20 m Hand excavated inspection pit.			Firm brown slightly sandy slightly gravelly CLAY with rootlets. Sand if fine to coarse. Gravel is fine to medium subrounded of various lithologies. (TOPSOIL)	(0.30) 0.30 +98.28	
- 0.60-1.10 	B 6 SPT S B 7	N=30 (2,7/9,7,7,7)	1.20	1.00	Firm brownish grey very sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of various lithologies.	(0.90) 1.20 +97.38	
- 2.00	D 8				Very stiff light brownish grey slightly		
- 2.30-2.75 - 2.30-2.80	SPT C B 9	N=18 (14,8/6,3,4,5)	2.30			(2.80)	
3.00	D 10						
- 3.50-3.94 - 3.50-4.00	SPT C B 11	50 (4,7/8,7,14,21 for 60mm)	3.50	dry		400 0455	
4.00-4.50 - 4.00 - 4.00	B 12 D 13 U NR	150 blows No recovery			Very stiff light grey slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse	4.00 +94.58	
- 4.50-4.95 - 4.50-5.00 -	SPT C B 14	N=40 (4,6/8,12,10,10)	4.50		subangular to subrounded of limestone.		
5.00 	D 15					(1.90)	• <u> </u>
- 5.50 	D 16		20/03/2012			5.90 +92.68	
		v			EXPLORATORY HOLE ENDS AT 5.90 m	0.00 102.00	
- - - -							
Depth	Type & No	Records	Date Casing	Time Water			
Groundwater Entrie No. Struck Pos (m) 1 1.10 -	es st strike behav	viour	Depth se	ealed (m) 1.50	Depth Related Remarks * From to (m)		me Tools used) mins
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:50	y sheet. All dep tum thickness	oths and reduced	Project Project No Carried ou).	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH6 eet 1 of 1

Soil Mechanics

Drilled DA Logged MMS Checked MH	Start 20/03/2012 End 20/03/2012	Equipment, Methods ar Dando 2000 Cable percussion boring	nd Remarks	5	Depth from to Diameter Casing Depth 0.00m 5.80m 150mm 5.80m	Ground Level Coordinates National Grid Chainage	+98.39 mOD E 653759.87 N 692970.81
Samples an	d Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, <i>Level</i> (Thickness)	Legend Backfill/ Instruments
0.00-0.30 0.10 0.30-0.50 0.50 0.50-1.00	B 1 D 2 D 3 B 4 D 5 B 6	0.00-1.20 m Hand excavated inspection pit.			Firm light brown slightly sandy CLAY. Sand is fine to coarse with rootlets. (TOPSOIL) Firm light brown very sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded	(0.30) 0.30 +98.09 0.50 +97.89 (0.70)	
- 1.20-1.65 - 1.20-1.65 - 1.30 - 1.30-1.80	SPT S D 7 D 8 B 9	N=14 (1,2/2,3,4,5)	1.20	0.80	sandstone	1.20 +97.19 1.30 +97.09	
1.80-2.20 1.80 2.20-2.61 2.20-2.70 2.50	B 10 U NR SPT C B 11 D 12	150 blows No recovery N=30 (17,8 for 35mm/8,7,7,8)			Gravel is fine to coarse subangular to subrounded of limestone and sandstone. Stiff becoming very stiff light grey sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular of sandstone and limestone.		
3.20-3.52 3.20-3.70 3.50	SPT C B 13 D 14	50 (11,13/20,17,13 for 20mm)	3.10	dry		(4.50)	
4.20-4.65 4.20-4.70 4.50	SPT C B 15 D 16	N=43 (4,8/10,12,10,11)	4.20				
5.20-5.61 5.20 5.20-5.70 5.50 5.80-6.08	SPT C W 17 B 18 D 19	\$3 (11,13/13,9,14,27 for 35mm) 50 (12,13 for 50mm/17,33)	5.20 20/03/2012 -5.80			5.80 +92.59	
Depth Groundwater Entrie No. Struck Pos (m)	st strike beha	Records viour after 20 minutes.	Date Casing Depth se	Time Water saled (m) 5.50	EXPLORATORY HOLE ENDS AT 5.80 m	Chiselling Depths (m) T 3.80 -4.00 3	ime Tools used 0 mins 0 mins
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:50	/ sheet. All dep tum thickness	and pths and reduced given in brackets ESG www.esg.co.uk x6481207/2012 164948	Project Project No Carried ou) .	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH7 eet 1 of 1

Soil Mechanics

DrilledDALoggedAOCheckedMH	Start 12/03/2012 End 12/03/2012	Cable percussion boring.	nd Remarks		Depth from to Diameter Casing Depth 0.00m 5.47m 150mm 5.20m	Ground Level Coordinates National Grid Chainage	Εe	3.92 mOD 553694.68 592966.94
Samples an	d Tests	•			Strata			
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend	Backfill/
0.00-0.25	B1	0.00-1.20 m Hand	Casing	Water	TOPSOIL	(Thickness)	J. J. L.	Instruments
0.10 0.25 	D 2 D 3	excavated inspection pit.			Light brown slightly slightly aravelly SAND. Gravel is subrounded fine	(0.30) 0.30 +98.62 (0.30)	× * ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
- 0.60 - 0.60 - 0.60-1.10 -	D 4 D 5 B 6				to coarse of limestone. Stiff, becoming very stiff, grey and brown slightly sandy slightly gravelly	0.60 +98.32	• <u>•</u>	
- 1.20-1.65 - 1.20-1.65 	SPT C B 7	N=22 (1,2/6,7,6,3)		dry	to gravelly CLAY with low cobble content. Gravel is subrounded fine to coarse of limestone. Cobbles are subrounded of limestone.			
- 1.70 - 1.70-2.20 - 1.70-2.15	D 8 B 9 U NR	150 blows No recovery	1.70	1.50			· · · ·	
- 2.20-2.65 - 2.20-2.70 -	SPT C B 10	N=25 (1,2/3,6,7,9)	2.20	2.10			• •	
2.70	D 11					(4.87)	·	
- 3.20-3.65 - 3.20-3.70 -	SPT C B 12	N=43 (4,6/10,10,11,12)	3.20	2.60		()		
- 4.00 - 4.20-4.65 - 4.20-4.70	D 13 SPT C B 14	N=37 (2,3/4,8,10,15)	4.20	3.10	4.20-5.00 m gravelly			
- 5.00 - 5.20-5.47	D 15 SPT C	50 (5,10/28,22 for 40mm)	5.20 12/03/2012 5.20	3.30 3.30				
Depth	Type & No	Records		Time Water	EXPLORATORY HOLE ENDS AT 5.47 m			
Groundwater Entrie No. Struck Pos (m) 1 1.50 -	es st strike beha	viour	Depth sea	aled (m) -	Depth Related Remarks * From to (m)	3.80 - 4.00 3	ime Tool 0 mins 0 mins	s used
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:50	y sheet. All de atum thickness	pths and reduced	Project Project No. Carried out		LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH8 eet 1 of 1	

Drilled DA	Start	Equipment, Methods a	nd Remarks	;	Depth from to Diameter Casing Depth	Ground Level	+98.75 n	
Logged MMS	21/03/2012 End	Dando Cable percussion boring			0.00m 7.60m 150mm 7.60m	Coordinates National Grid	E 65371 N 69298	
Checked MH	22/03/2012					Chainage		
Samples ar	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)		ackfill/ uments
0.00-0.30 0.10 0.30 0.30-0.60 0.50	B 1 D 2 D 3 B 4 L 5	0.00-1.20 m Hand excavated inspection pit.			Brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to medium subangular to subrounded of various lithologies with rootlets.	(0.30) 0.30 +98.45 (0.30) 0.60 +98.15		$\langle \rangle$
0.60 0.60-0.80 0.80 0.80-1.20	D 6 B 7 D 8 B 9 SPT S	N=22 (1,1/3,5,6,8)			(TOPSOIL) Light brown very sandy gravelly CLAY. Sand is fine to coarse. Gravel is fine to medium subangular to subrounded of various lithologies.	(0.60) (0.60) 1.20 +97.55		
- 1.20-1.65 - 1.20 - 1.20-1.70 2.00	D 10 W 11 B 12 D 13				Stiff purplish grey slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of limestone and sandstone.			
2.20-2.65 2.20-2.70 	SPT C B 14	N=26 (4,4/6,8,7,5)	2.20	dry	Stiff purplish grey becoming grey Slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of limestone and sandstone.			
	D 15 SPT C B 16	N=31 (4,4/6,7,8,10)	3.10			(4.10)		
 4.00	D 17		21/03/2012	0800				$\langle \rangle$
- 4.30-4.75 - 4.30-4.80 -	SPT C B 18	N=38 (5,7/8,10,10,10)	4.20	dry				$\left \right\rangle$
- 4.80-5.25 	U 19	150 blows 300 mm rec					· · · · · · · · · · · · · · · · · · ·	$\sum_{i=1}^{n}$
5.25 5.30-5.73 5.30-5.80	B 21	50 (6,9/12,12,16,10 for 50mm)	5.10		Very stiff light grey slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is fine to coarse subangular to subrounded of sandstone.	5.30 +93.45		
- 6.00 	D 22					(2.30)		
- 6.80-7.15 - 6.80-7.30 - 7.00 	SPT C B 23 D 24	50 (5,11/13,19,18 for 50mm)						$\left \right\rangle$
- 7.50 - 7:60 	D 25 SPT-C		22/03/2012		EXPLORATORY HOLE ENDS AT 7.60 m	7.60 +91.15		
-			Date	Time				
Depth	Type & No	Records		Water				
(m)	st strike beha	viour after 20 minutes.	Depth se	aled (m) 2.00	Depth Related Remarks * From to (m)		ime Tools use 0 mins	d
Notes: For explanati abbreviations see ke levels in metres. Stra in depth column. Scale 1:50	ey sheet. All de atum thickness	and pths and reduced given in brackets ESG www.esg.co.uk 26.4812/07/2012 16:49:51	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH9 eet 1 of 1	

(c) ESG www.esg.co.uk 426.4812/07/2012 16:49:51

Scale 1:50

Soil Mechanics

DrilledDALoggedAOCheckedMH	Start 12/03/2012 End 12/03/2012	Equipment, Methods a Dando 2000. Cable percussion boring.	nd Remark	s	Depth from to Diameter Casing Depth 0.00m 5.50m 150mm 5.50m	Ground Level Coordinates National Grid Chainage	+98.55 mO E 653737.7 N 692998.0	73
Samples an	d Tests		-		Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Backf	
- 0.00-0.30 - 0.10 - 0.30 - 0.30-0.80 - 0.90 - 0.90-1.20 - 1.20-1.65 - 1.20-1.70	B1 D2 D3 B4 D5 B6 SPT C B7	0.00-1.20 m Hand excavated inspection pit. N=6 (3,3/1,2,1,2)	1.20	0.90	TOPSOIL.	(0.30) 0.30 +98.25 (0.60) 0.90 +97.65		///////
2.00 2.20-2.65 2.20-2.70	D8 SPTC B9	N=19 (3,6/5,4,5,5)	2.20	1.20	sandy GRAVEL with low to high cobble content. Gravel is subrounded fine to coarse of limestone. Cobbles are subrounded of limestone.	(1.90)		11/1/
2.80 3.00-3.33 3.00-3.50 3.50	D 10 SPT C B 11 D 12	50 (4,8/11,11,28 for 30mm)	3.00	0.00	Very stiff grey slightly sandy slightly gravelly CLAY with low cobble content. Gravel is subrounded fine to coarse of limestone. Cobbles are subrounded of	2.80 +95.75		///////////////////////////////////////
- 4.00-4.45 - 4.00-4.50	SPT C B 13	N=39 (4,8/8,9,10,12)	4.00	dry		(2.70)		[
- 4.50 	D 14 B 15		12/03/2012	,				1111
Depth		Records	Date Casing	Time Water	EXPLORATORY HOLE ENDS AT 5.50 m	5.50 +93.05		
(m) None observed (se			Depth s	ealed (m)	From to (m)	3.40 -3.60 3	me Tools used) mins	
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:50	y sheet. All de atum thickness	pths and reduced	Project Project Ne Carried of	D.	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY Y2012-12A EirGrid		BH10 eet 1 of 1	

Soil Mechanics

						S	oil Mechanics
Logged AO Checked AO	Start 08/03/2012 End 08/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation Width 1.35 m A Length 2.00 m D	в 📫 100 (Deg)	Ground Level Coordinates National Grid Chainage	+98.85 mOI E 653735.7 N 692861.8
Samples ar	nd Tests		Strata				
Depth	Type & No.	Date Bosords		Description		Depth, Level	Legend Backfill
•		Date Records		velly SILT. Sand fine to coarse velly CLAY brounded to RAVEL with low s subrounded to ologies. ed to rounded of		Depth, <i>Level</i> (Thickness) (0.30) 0.30 +98.55 0.50 +98.35 (0.80) 1.30 +97.55 (0.30) 1.60 +97.25	Legend Backfill Instrume
Depth Groundwater Entri No. Struck Post Stri (m) 1 1.50 Rose to	ke Behaviour	Records Date	Depth Related Remarks * From to (m) 1.60 Trial pit terminated due to water in	flow.	-	Stability Mod Shoring None Weather Sun	e
otes: For explanations see ke evels in metres. Stra a depth column. cale 1:25	y sheet. All de atum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 26.481207/2012 16.46:49	Project LAOIS KILKENNY REIN COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	IFORCEMENT PROJECT -			PS1 eet 1 of 1

Checked AO Enc 08/0 Depth Type	/03/2012 nd /03/2012	Equipment, Methods 13.5T tracked excavator, Date Records	machine excavated. Strata	d fine to coarse of g slightly sandy le content. of limestone.	→ 002 (Deg)	Ground Level Coordinates National Grid Chainage Depth, <i>Level</i> (Thickness) (0.30) 0.30 +97.22 0.50 +97.02	E 6 N 6	7.52 mOD 53853.95 992943.02 Backfill/ Instrumer
Depth Type	B 1		1 TOPSOIL. 2 Firm light brown and grey mottled gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	sandy slightly d fine to coarse of g slightly sandy le content. of limestone.		(0.30) (0.30) 0.30 +97.22	<u> </u>	Backfill/ Instrumer
Depth Type	B 1		1 TOPSOIL. 2 Firm light brown and grey mottled gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	sandy slightly d fine to coarse of g slightly sandy le content. of limestone.		(0.30) (0.30) 0.30 +97.22	<u> </u>	Backfill/ Instrume
- 0.90-1.00	B1	Records	 1 TOPSOIL. 2 Firm light brown and grey mottled gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse 	sandy slightly d fine to coarse of g slightly sandy le content. of limestone.		(0.30) 0.30 +97.22	<u> </u>	Instrume
			 2 Firm light brown and grey mottled gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse 	d fine to coarse of g slightly sandy le content. of limestone.		0.30 +97.22		
			gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	d fine to coarse of g slightly sandy le content. of limestone.		0.30 +97.22		
			gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	d fine to coarse of g slightly sandy le content. of limestone.				
			gravelly CLAY. Gravel is subrounded various lithologies. 3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	d fine to coarse of g slightly sandy le content. of limestone.		0.50 +97. <i>0</i> 2		
			3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse	g slightly sandy le content. of limestone. le.	-	0.50 +97. <i>0</i> 2		
			3 Soft to firm grey and brown mottlin slightly gravelly CLAY with low cobb Gravel is subrounded fine to coarse Cobbles are subrounded of limestor	g slightly sandy le content. of limestone. le.	-		°	
			Gravel is subrounded fine to coarse Cobbles are subrounded of limestor	of limestone. ie.			<u> </u>	
						1	÷	
					_		- - -	
							° · P	
					_	(1.20)	<u> </u>	
					-		· @ · o	
					-		·	
					-		°	
					-		- °	
	C	08/03/2012 dry			-		· @ •	
			EXPLORATORY HOLE END	S AT 1.70 m		1.70 +95.82		
					-			
_								
					_			
					_			
-					-			
					-			
					-			
-					-			
-					-			
-								
-					-			
-					_			
					_			
_					_			
					-			
					-			
					-			
					-			
-								
					-			
					-			
					-			
					-			
					-			
					-			
					-			
.					-			
Denth T		Records						+
	e & No.	Date						
Groundwater Entries No. Struck Post Strike Beh	haviour		Depth Related Remarks * From to (m)			Stability Mode	erate	
(m)			1.70 Trial pit terminated at required de	pth.		1		
None observed (see Key	/ Sheet)					Shoring None		
						Weather Over	cast	
lotes: For explanation of s	symbols and	d	Project LAOIS KILKENNY REI	NFORCEMENT PROJECT -		Trial Dit		
bbreviations see key shee evels in metres. Stratum the	et. All depth	ns and reduced	COOLNABACKY Project No. Y2012-12A			Trial Pit	PS2	
n depth column. Scale 1:25		G www.esg.co.uk	Carried out for EirGrid				et 1 of 1	

Soil Mechanics

Soil Mechanics						
Logged AO Checked AO	Start 08/03/2012 End 08/03/2012	Equipment, Methods 60 13.5T tracked excavator,		Dimensions and Orientation Width 1.35 m Length - D B \rightarrow 002 (Deg)	Ground Level Coordinates National Grid Chainage	+97.90 mOD E 653831.91 N 692775.11
Samples an	d Tests		Strata			
•		Date		ription	Depth, Level	Legend Backfill/
Dopin	Type & NO.	Records			(Thickness)	Instrumen
Depth	B1 D2 B3 D4	08/03/2012 1.30	1 TOPSOIL. 2 Firm brown sandy slightly gravelly SIL'subrounded fine to coarse of various lith 3 Grey gravelly fine to coarse SAND. Gr subrounded to rounded fine to coarse of lithologies. 4 Firm brown and grey slightly sandy slig gravelly CLAY with low cobble content. G subrounded fine to coarse of various lith Cobbles are subrounded of limestone. EXPLORATORY HOLE ENDS AT	T. Gravel is ologies.	(0.30) 0.30 +97.60 (0.60) 0.90 +97.00 (0.40) 1.30 +96.60 (0.30) 1.60 +96.30	
				-	1	
_				-	1	
_						
Depth	Type & No.	Records Date				
Groundwater Entrie No. Struck Post Strik (m) 1 1.30 Steady in	xe Behaviour flow		Depth Related Remarks * From to (m) 1.30 Trial pit terminated at required depth.		Stability Poor Shoring None Weather Sunr	9
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:25	y sheet. All dep tum thickness	oths and reduced	Project LAOIS KILKENNY REINFO COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	RCEMENT PROJECT -		PS3 eet 1 of 1

Logged AO Checked MH	Start 08/03/2012 End 08/03/2012	Equipment, Method 13.5T Hitachi Machine excavated.	s and Remarks	Dimensions and Orientation Width 1.40 m Length 3.90 m ^D [▲] C ^B → 040 (Deg)	Ground Level Coordinates National Grid Chainage	+99.13 mOl E 653664.1 N 692955.1
Samples ar	nd Tests		Strata			
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfill
Depth 0.60-0.70 0.60-0.70 1.10	B1 D2 HV	p 56kPa, r 5kPa	1 TOPSOIL 2 Grey slightly gravelly SAND with low c content. Sand is fine and medium. Grav subrounded fine to coarse of various lithologies.Cobbles are subrounded of li 3 Firm becoming stiff grey slightly sandy gravelly CLAY with low cobble content. S to coarse. Gravel is fine to coarse subro limestone. Cobbles are subrounded of li	obble 0.30-0.50 m orange brown el is staining - mestone r slightly Sand is fine - unded of -	(0.30) 0.30 +98.83 (0.70) 1.00 +98.13	Instrum
1.90-2.00 1.90-2.00	B3 D4			-	(2.00)	
2.90-3.00 2.90-3.00	B 5 D 6	08/03/2012	EXPLORATORY HOLE ENDS AT	- - - 3.00 m - -	3.00 +96.13	
-				- - - - - - - - - - - - - - - - - - -		
Depth Groundwater Entri		Records Date	Depth Related Remarks *	-	Stability Mod	erate
Io. Struck Post Stri (m) 1 1.00 Slight se	epage		From to (m) 3.00 Trial pit terminated at required depth.		Shoring None Weather Over	e
otes: For explanati obreviations see ke vels in metres. Stra depth column. cale 1:25	ey sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REINFO COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	RCEMENT PROJECT -		TP1 eet 1 of 1

رل Soil Mechanics

						oil Mechanics
Logged AO Checked MH	Start 08/03/2012 End 08/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation Width 1.40 m Length 2.10 m ^D ^A _C ^B ➡ 000 (Deg)	Ground Level Coordinates National Grid Chainage	+98.37 mOD E 653745.33 N 693013.31
Samples an	d Tests		Strata			
Depth	Type & No.	Date		ription	Depth, Level	Legend Backfill/
-	· , , , , , , , , , , , , , , , , , , ,	Records	1 TOPSOIL. 2 Firm light brown and grey mottling san	- - -	(Thickness) (0.30) 0.30 +98.07	Instrument
- 0.40 - -	D1		gravelly SILT. Gravel is subrounded fine various lithologies. 3 Grey very sandy clayey GRAVEL with I content. Gravel is subrounded to rounde coarse of various lithologies. Cobbles ar	to coarse of	0.55 +97.82	
- 0.80-0.90 - 0.80-0.90	B2 D3		of limestone.	-	(0.45)	
1.00 - - - - 1.50-1.60 _ 1.50-1.60 -	HV B 4 D 5	p 94kPa, r 6kPa	4 Stiff grey slightly sandy slightly gravelly with low cobble and boulder content. Gra subrounded fine to coarse of various lith Cobbles and boulders are subrounded o to 400mm in size.	ologies.	1.00 +97.37	
	B6 D7	08/03/2012		-	(2.00)	
	Type & No.	Records	EXPLORATORY HOLE ENDS AT	3.00 m	3.00 +95.37	
Groundwater Entrie	es	Dale	Depth Related Remarks *		Stok Illus D	
No. Struck Post Strik (m) 1 1.00 Steady in	xe Behaviour flow.		From to (m) 3.00 Trial pit terminated at required depth.		Stability Poor Shoring None Weather Over	e
Notes: For explanatio abbreviations see key levels in metres. Stra in depth column. Scale 1:25	/ sheet. All dep tum thickness	oths and reduced	Project LAOIS KILKENNY REINFOI COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	RCEMENT PROJECT -		TP2 eet 1 of 1

رر Soil Mechanics

Logged AO Checked MH	Start 08/03/2012 End 08/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation Width 1.40 m Length 3.10 m C B → 080 (Deg)	Ground Level Coordinates	E 6	.31 mOD 53782.00 92963.62
Samples ar	nd Tests		Strata				
Depth	Type & No.	Date Records	Des	cription	Depth, Level (Thickness)	Legend	Backfill/
-		Records . p 53kPa, r 4kPa p 47kPa, r 5kPa 08/03/2012		rey y slightly Gravel is hologies.	Depth, <i>Level</i> (Thickness) 0.30 +98.01 0.50 +97.81 (0.50) 1.00 +97.31 (2.00)	Legend $x \times x$ $p \to 0$ $q \to 0$	Backfill/ Instrument
Depth Groundwater Entrin (m) None observed (see	ke Behaviour	Records Date	EXPLORATORY HOLE ENDS A EXPLORATORY HOLE ENDS A Depth Related Remarks * From to (m) 0.70 1.00 Seepage 3.00 Trial pit terminated at required depth.	T 3.00 m	3.00 +95.31		
lotes: For explanations see key evels in metres. Strand n depth column. Scale 1:25	y sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REINFO COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	DRCEMENT PROJECT -		rcast TP3 eet 1 of 1	

رر Soil Mechanics

Logged AO Checked AO	Start 08/03/2012 End 08/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation Width 1.60 m Length 3.20 m □B → 090 (Deg)	Ground Level Coordinates National Grid Chainage	+99.46 mO E 653700.1 N 692907.1
Samples an	d Tests		Strata			
Depth	Type & No.	Date Records	Desc	cription	Depth, Level (Thickness)	Legend Backfil
- - - 0.50	D1		1 TOPSOIL. 2 Firm light brown and orange sandy sli SILT. Gravel is subrounded fine to coars lithologies 3 Firm becoming soft grey and brown m gravelly CLAY with medium cobble cont	se of various - 	(0.30) 0.30 +99.16 (0.40) 0.70 +98.76	x * 0 × 7 x * 0 × 7 x * 0 × 7 x * 2 × 0 x * 2 × 1 x * 2 × 1
- 1.00	HV	p 57kPa, r 0kPa	boulder content. Gravel is subrounded f of various lithologies. Cobbles and boul subrounded of limestone up to 300mm.	ders are		
- 1.20-1.30 1.20-1.30 - - -	B 2 D 3			- - - - -	(1.30)	
- 2.00-2.10 2.00-2.10	B 4 D 5		4 Grey clayey SAND and GRAVEL with low boulder content. Gravel is subround coarse of various lithologies. Cobbles a are subrounded of limestone up to 400n	led fine to	2.00 +97.46 (1.00)	10000000000000000000000000000000000000
2.90-3.00 2.90-3.00	B 6 D 7	08/03/2012 * 2.50	EXPLORATORY HOLE ENDS AT	-	- - - 3.00 +96.46	
Depth	Tyde & No.	Records				
Depth	Type & No.	Date			ļ	
Groundwater Entrie No. Struck Post Strik (m) None observed (see	e Behaviour		Depth Related Remarks * From to (m) 2.50 3.00 Seepage 3.00 Trial pit terminated at required depth.		Stability Poor Shoring Non- Weather Over	e
Notes: For explanatio abbreviations see key evels in metres. Stra n depth column. Scale 1:25	/ sheet. All dep tum thickness	oths and reduced	Project LAOIS KILKENNY REINFO COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	RCEMENT PROJECT -		TP4 eet 1 of 1

Logged AO Checked MH	Start 08/03/2012 End 08/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orienta Width 1.70 m Length 3.00 m D	tion ▲ C B ➡ 120 (Deg)	Ground Level Coordinates National Grid Chainage	Εθ	8.53 mOE 653736.53 692945.56
Samples ar	nd Tests		Strata					
Depth	Type & No.	Date Records	De	scription		Depth, Level (Thickness)	Legend	Backfill Instrum
0.50-0.60 0.50-0.60	B 1 D 2		1 TOPSOIL. 2 Firm light brown/orange and grey mo sandy slightly gravelly CLAY. Gravel is fine to coarse of various lithologies.	subrounded		(0.30) 0.30 +98.23 (0.40) 0.70 +97.83		
1.00	HV	p 112kPa, r 14kPa	3 Stiff grey and brown mottling slightly slightly gravelly CLAY with low cobble content. Gravel is subrounded fine to o various lithologies. Cobbles and bould subrounded of limestone up to 400mm	coarse of ers are h in size.	-	(0.60) 1.30 +97.23		
1.50	D3		4 Grey gravelly SAND with low cobble is subrounded fine to coarse of limesto are subrounded of limestone.	content. Gravel one. Cobbles	- - - - -	(0.80)	b. b. b. b. b. b. b.	1
2.50-2.60 2.50-2.60	B 4 D 5	08/03/2012 1.60	5 Firm to stiff grey slightly sandy slight CLAY with low cobble and boulder cor subrounded fine to coarse of various li Cobbles and boulders are subrounded to 400mm in size.	ntent. Gravel is thologies.		2.10 +96.43 (0.90)		
			EXPLORATORY HOLE ENDS /	AT 3.00 m		3.00 +95.53		
								
Depth oundwater Entrie o. Struck Post Strik (m) 1 1.60 Steady in	ke Behaviour	Records Date	Depth Related Remarks * From to (m) 3.00 Trial pit terminated at required depth			Stability Poor Shoring Non- Weather Over	е	
tes: For explanations see key breviations see key rels in metres. Stra depth column. ale 1:25	y sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REINF COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	ORCEMENT PROJECT -			TP5 eet 1 of 1	

Logged AO Checked MH	Start 07/03/2012 End 07/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation Width 1.50 m Length 3.40 m	Ground Level Coordinates National Grid Chainage	+99.25 m E 653658 N 692878
Samples ar	nd Tests		Strata			
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Back
Depth 0.90-1.00 0.90-1.00 1.00 1.00	B 1 D 2 HV B 3 D 4		1 TOPSOIL. 2 Grey and brown mottling slightly silty s gravelly SAND. Sand is fine to medium. subrounded to rounded fine to coarse of lithologies. 3 Grey slightly gravelly fine to coarse SA is subrounded to rounded fine to coarse lithologies. 4 Stiff grey slightly sandy slightly gravelly gravelly CLAY with low cobble and bould Gravel is subrounded fine to coarse of w lithologies. Cobbles and boulders are su limestone. Occasional lenses of grey sa	Iightly Gravel is various ND. Gravel of various		Legend Instru
2.50	HV	p 118kPa, r 17kPa		- - -		
2.90-3.00 2.90-3.00	B 5 D 6	07/03/2012 * 1.00		-	- 3.00 +96.25	·
_				- - - - - - - - - - - - - - - - - - -		
Depth	Type & No.	Records Date				
Groundwater Entrie No. Struck Post Stril (m) None observed (see	ke Behaviour		Depth Related Remarks * From to (m) 1.00 2.00 Numerous small inflows 3.00 Trial pit terminated at required depth.		Stability Mod Shoring Non Weather Sun	e
otes: For explanation bbreviations see key evels in metres. Stra a depth column. scale 1:25	y sheet. All de atum thickness	pths and reduced	Project LAOIS KILKENNY REINFOI COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	RCEMENT PROJECT -		TP6 eet 1 of 1

Soil Mechanics

Logged AO Checked AO	Start 07/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation	Ground Level Coordinates	+99.63 mO E 653622.6 N 693251.0
	End 07/03/2012			Length 3.50 m C	National Grid Chainage	N 692851.9
Samples a	nd Tests		Strata			,
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfi
			1 TOPSOIL.	-	(0.20)	
				-	(0.30)	
			2 Grey slightly gravelly fine to medium S is subrounded to rounded fine to coarse	AND. Gravel	0.30 +99.33	°
0.50-0.60 0.50-0.60	B1 D2		lithologies.	-		₽ °
0.00 0.00				-	(0.80)	
0.80	HV	p 48kPa, r 6kPa		-	()	
_				-	-	e · · ·
1.10	HV	p 167kPa, r 12kPa	3 Stiff brown and grov mottling slightly s	andy	1.10 +98.53	
			3 Stiff brown and grey mottling slightly so slightly gravelly CLAY with low cobble co Gravel is subrounded to rounded fine to	ontent.		° •
			various lithologies. Cobbles are subroun limestone.	nded of	-	·
1.50-1.60 1.50-1.60	B 3 D 4			-		
				-	(1.00)	°
				-		
_				-		
			4 Grey slightly clayey slightly sandy GRA	AVEL with	2.10 +97.53	•
			4 Grey slightly clayey slightly sandy GRA high cobble content. Gravel is subangula subrounded fine to coarse of various lith	ar to		° <u>∘</u> 01 °°°▼
			Cobbles are subangular of limestone.	-	-	
2.50-2.60 2.50-2.60	B 5 D 6			-	(0.90)	<u> </u>
				-	-	• • • •
		07/03/2012		-		<u> </u>
-		2.30	EXPLORATORY HOLE ENDS AT	2.00 m	3.00 +96.63	°
				-		
				-		
				-		
				-	-	
				-		
				-	-	
-				-		
				-	-	
				-		
				-		
				-		
				-		
Depth	Type & No.	Records Date				
Groundwater Entri No. Struck Post Stri (m)			Depth Related Remarks * From to (m)		Stability Poor	r
1 2.30 -			3.00 Trial pit terminated at required depth.		Shoring None Weather Sune	
otes: For explanati	ion of symbols	and	Project LAOIS KILKENNY REINFO	RCEMENT PROJECT -	Trial Pit	
bbreviations see ke evels in metres. Str depth column.	atum thickness	given in brackets	COOLNABACKY Project No. Y2012-12A			TP7
cale 1:25	(c) 4	ESG www.esg.co.uk	Carried out for EirGrid		She	eet 1 of 1

了 Soil Mechanics

						oil Mechanics
Logged AO	Start 07/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientation	Ground Level Coordinates	+99.74 mC E 653591.
Checked MH	End 07/03/2012			Width 1.50 m ▲ Length 3.50 m ■ ■ 350 (Deg)	National Grid	N 692829.
- -				C	Chainage	
Samples ar	nd Tests		Strata		Dentili i	I_
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfi
			1 TOPSOIL.			
				-	(0.35)	
					-	
			2 White slightly gravelly silty fine to coar Gravel is subrounded fine to coarse of v	se SAND.	0.35 +99.39	×
0.50	D1		Gravel is subrounded fine to coarse of v lithologies.	arious .		° × _ o
				velis	0.60 +99.14	××× ××o×⊂
			3 Grey slightly gravelly sandy SILT. Gravely subrounded to rounded fine to coarse of lithologies. Sand is fine to coarse.	fvarious		0 × 2 0 × 2 × 0
0.90-1.00	B2		innologies. Sand is line to coarse.			× × ×
0.90-1.00	D3					A x x
1.00	HV	p 31kPa, r 2kPa			-	x *0 x 0 0 * x 0 0 * 0 0
					(1.10)	× × × ×
					-	с х х х
				-	-	××o×c
				-	-	××××
					1.70 .00.04	× • • • * 1
			4 Soft grey slightly sandy slightly gravell with low cobble content. Gravel is subro	y CLAY	1.70 +98. <i>04</i>	
1.90-2.00	В4		coarse of various lithologies. Cobbles a	re .	_	<u> </u>
	D 5 HV	p 13kPa, r 1kPa	subrounded of limestone.	_	-	· o
2.00	W 8	איזער א, די אייש		-	-	· · ·
				-		0 <u> </u>
				-	(1.30)	<u> </u>
				-	(1.00)	· @ -
				-	-	
						<u> </u>
				-	_	
2.90-3.00	B6	07/03/2012				. o -
2.90-3.00	D7	* 1.70			3.00 +96.74	
			EXPLORATORY HOLE ENDS AT	3.00 m	-	
				-	-	
				-		
				-		
				-	-	
				-	-	
				-		
-				-		
					-	
				-		
				-		
				-	-	
				-	-	
				-	-	
				-		
Depth	Type & No.	Records Date				
Froundwater Entri		Dale	Depth Related Remarks *		Stol-Illing D	
No. Struck Post Stri (m)			From to (m)		Stability Poor	
1 1.70 -			3.00 Trial pit terminated at required depth.		Shoring None	e
					Weather Sun	
						-
otes: For explanations see ke vels in metres. Stra	on of symbols y sheet. All de	and pths and reduced	Project LAOIS KILKENNY REINFO COOLNABACKY	RCEMENT PROJECT -	Trial Pit	
vels in metres. Stra depth column.			Project No. Y2012-12A			TP8
cale 1:25	(C) 42	ESG www.esg.co.uk	Carried out for EirGrid		She	eet 1 of 1

Soil Mechanics

						oil Mechanics
Logged AO Checked MH	Start 07/03/2012 End 07/03/2012	Equipment, Methods 13.5T Hitachi, machine e	excavated.	Dimensions and Orientation Width 1.50 m Length 3.50 m DB ➡ 355 (Deg)	Ground Level Coordinates National Grid Chainage	+100.80 mOD E 653532.01 N 692795.09
Samples ar	nd Tests		Strata	-		
Depth	Type & No.	Date	Descrip	tion	Depth, Level	Legend Backfill/
	Type a no.	Records	1 TOPSOIL.		(Thickness)	Instrumen
-				-		
-				-	(0.40)	
-				-	0.40 +100.40	
-			2 Grey fine to coarse SAND.	-		
0.60-0.70 0.60-0.70	B1 D2			-		
0.00-0.70	02			-	(* * * *	
				-	(0.80)	
_				_		
				-		
			3 Stiff light brown slightly sandy slightly gra	avelly	1.20 +99.60	× ×0 ×0
			3 Stiff light brown slightly sandy slightly gra SILT. Gravel is subrounded fine to coarse lithologies. Occasional lens of sand.	of various -		0 × Å × ×
1.50-1.60	В3			-		× × ×
1.50-1.60	D 4			-	(* * * *	× × ×
				-	(0.90)	° × ∻ ∘1 × × 1
				-		× × ×
				-		
					2.10 +98.70	× *0 × *
			4 Stiff grey slightly sandy slightly gravelly C with low cobble content. Gravel is subroun	CLAY	2.10 +30.70	· -
			coarse of various lithologies. Cobbles are subrounded of limestone.			<u> </u>
			subjounded of innestone.	-		
2.50-2.60 2.50-2.60	B 5 D 6			-	(0.90)	• •
				-		° <u>~</u> -
				-		·
		07/03/2012		-		
		*	EXPLORATORY HOLE ENDS AT 3.		3.00 +97.80	
				-		
				-		
				-	-	
				-		
				-		
				-		
				-		
-						
				-		
				-		
				-		
				-		
				-		
				-]	
				-		
Depth	Type & No.	Records				
Groundwater Entri	-	Date	Depth Related Remarks *		0	
No. Struck Post Stril (m)			From to (m)		Stability Good	נ
1 1.80 Slow trick	kle		3.00 Trial pit terminated at required depth.		Shoring None	9
					Weather Sunr	
Notes: For explanation	on of symbols a	and	Project LAOIS KILKENNY REINFORC	EMENT PROJECT -	Trial Dit	
bbreviations see ke evels in metres. Stra	y sheet. All de atum thickness	oths and reduced given in brackets	Project COOLNABACKY Project No. Y2012-12A		Trial Pit	TP9
depth column.	(C)	ESG www.esg.co.uk	Carried out for EirGrid			et 1 of 1
	42				Sile	

Trial Pit Log

Logged AO Checked MH	Start 07/03/2012 End 07/03/2012			Ground Level Coordinates National Grid Chainage	+102.21 mO E 653482.0 N 692759.5	
Samples ar	nd Tests		Strata			
Depth	Type & No.	Date Records	Des	scription	Depth, Level (Thickness)	Legend Backfi
			1 TOPSOIL. 2 Light brown slightly gravelly SAND. S medium. Gravel is subrounded to roun coarse of various lithologies.	and is fine to ded fine to	- (0.40) - 0.40 +101.81 	9.0
0.90-1.00 0.90-1.00 1.00	B1 D2 HV	p 44kPa, r 8kPa		-	- - - (1.30) -	
1.90-2.00 1.90-2.00	B 3 D 4		3 Brown slightly gravelly to very gravell coarse SAND. Gravel is subrounded to coarse of various lithologies.	y fine to rounded fine to	- 1.70 +100.51 -	2 2 2 2 3 2 3 3 3 3 3 3 4 3 3 3 4 3 3 3 4 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 4 3 3 3 3 4 3 3 3 3 4 3
2.20	W 5				(1.10)	а а а а
		07/03/2012			- 2.80 +99.41	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
			EXPLORATORY HOLE ENDS A	T 2.80 m	- 2.80 +99.47	
Depth	Type & No.	Records				
roundwater Entri o. Struck Post Stri (m) 1 2.00 Quick inf	es ke Behaviour	Date	Depth Related Remarks * From to (m) 2.80 Trial pit terminated due to instability.		Stability Poor Shoring Non- Weather Sun	e
otes: For explanations see ker vels in metres. Stra depth column. cale 1:25		and pths and reduced given in brackets ESG www.esg.co.uk 264812/07/2012 16:47:13	Project LAOIS KILKENNY REINFO COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	DRCEMENT PROJECT -		ГР10 eet 1 of 1

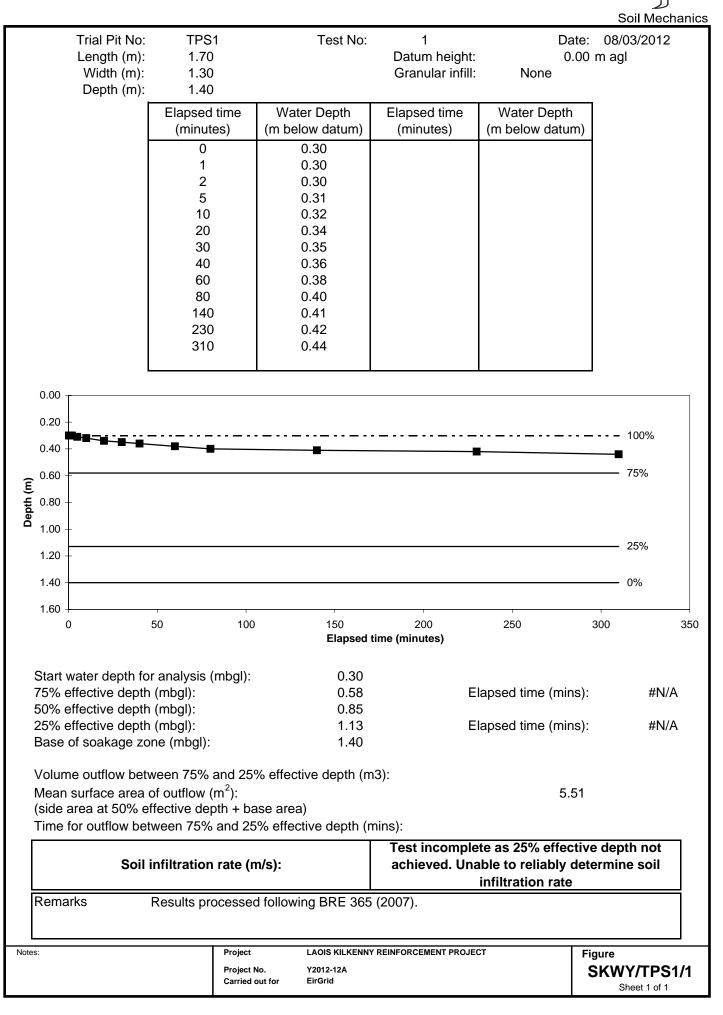
Trial Pit Log

Logged AO Checked AO	Start 07/03/2012 End 07/03/2012	Equipment, Methods 13.5T Hitachi, machine e		Dimensions and Orientati Width 1.50 m Length 3.50 m	on B ➡ 100 (Deg)	Ground Level Coordinates National Grid Chainage	+104.21 m E 653444 N 692722
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Records		Description		Depth, Level (Thickness)	Legend Back
			1 TOPSOIL. 2 Brown slightly gravelly fine to is subrounded fine to medium o	coarse SAND. Gravel	-	(0.30) 0.30 +103.91	200
0.50-0.60 0.50-0.60	B 1 D 2				-	(0.50) 0.80 +103.41	P
0.90 - 1.00	D 3 HV	p 70kPa, r 12kPa	3 Black slightly organic fine to c 4 Grey becoming light brown sli Sand is fine to medium. Gravel rounded fine to medium of vario	ghtly gravelly SAND. is subrounded to	1.00-1.20 m slightly silty	1.00 +103.21	1//
1.40-1.50 1.40-1.50	B 4 D 5				 1.80 m light brown	(2.00)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2.50-2.60 2.50-2.60	B 6 D 7	07/03/2012 3.00				(2.00)	
_			EXPLORATORY HOLE	ENDS AT 3.00 m		3.00 +101.21	
Depth Groundwater Entri Jo. Struck Post Stri (m) 1 3.00 Base of	ike Behaviour	Records Date	Depth Related Remarks * From to (m) 3.00 Trial pit terminated at requir	ed depth.		Stability Mod Shoring Non- Weather Sun	e
lotes: For explanati bbreviations see ke evels in metres. Stra depth column. Scale 1:25	ey sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	REINFORCEMENT PROJECT -			FP11 eet 1 of 1

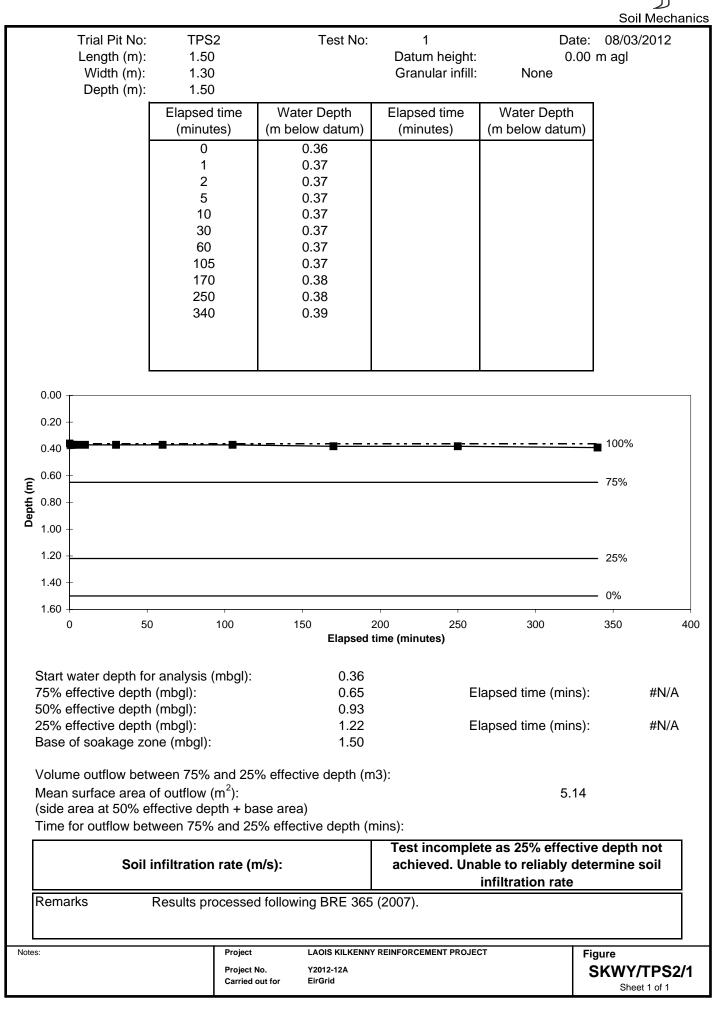
Trial Pit Log

						S	oil Mecha	nics
Logged AO Checked MH	Start 07/03/2012 End 07/03/2012	Equipment, Methods 13.5T Hitachi, machine (]B ➡ 350 (Deg)	Ground Level Coordinates National Grid Chainage	E 6	+113.44 mOD E 653171.09 N 692421.67	
Samples ar	nd Tests		Strata					
Depth	Type & No.	Date Records	l	Description		Depth, Level (Thickness)	Legend	Backfill
0.90-1.00 - 0.90-1.00 1.00	Туре & No. В 1 D 2 HV	p 23kPa, r 2kPa	1 TOPSOIL. 2 Orange brown slightly gravelly san fine to medium. Gravel is rounded fir various lithologies.	dy SILT. Sand is		(Thickness) (0.40) 0.40 +113.04 (1.20)		Instrum
1.90-2.00 1.90-2.00	B3 D4		3 Grey slightly gravelly to gravelly fin SAND with low cobble content. Grav rounded fine to coarse of various lith Cobbles are rounded of limestone.	e to coarse rel is subrounded to lologies.		1.60 <i>+111.84</i> (1.40)	۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۰.۰.۰ ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵. ۵.	
2.90-3.00 2.90-3.00	B 5 D 6	07/03/2012 dry	EXPLORATORY HOLE END	S AT 3.00 m	- - - - - - - - - - - - - - - - - - -	3.00 +110.44		
Depth	Type & No.	Records Date						
Groundwater Entrie No. Struck Post Stril (m) None observed (see	ke Behaviour		Depth Related Remarks * From to (m) 3.00 Trial pit terminated at required de	pth.		Stability Good Shoring None Weather Sune	e	
lotes: For explanation bbreviations see key evels in metres. Strain depth column. scale 1:25	y sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REI COOLNABACKY Project No. Y2012-12A Carried out for EirGrid	NFORCEMENT PROJECT -			P12 eet 1 of 1	

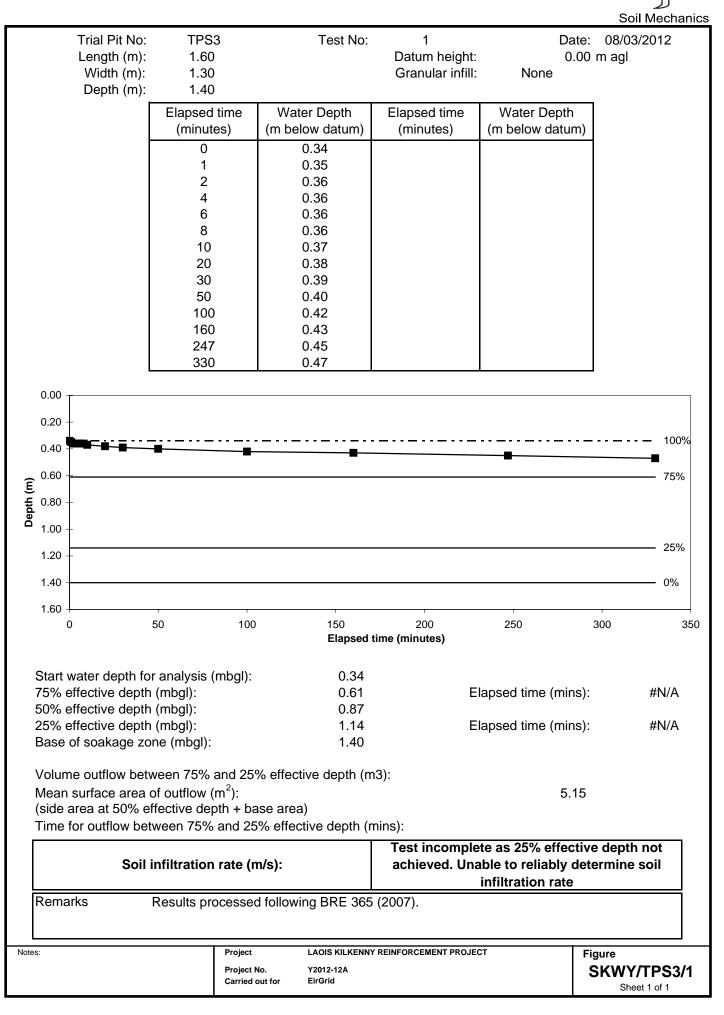
ENCLOSURE B


Dynamic Cone Penetrometer Tests with CBR values

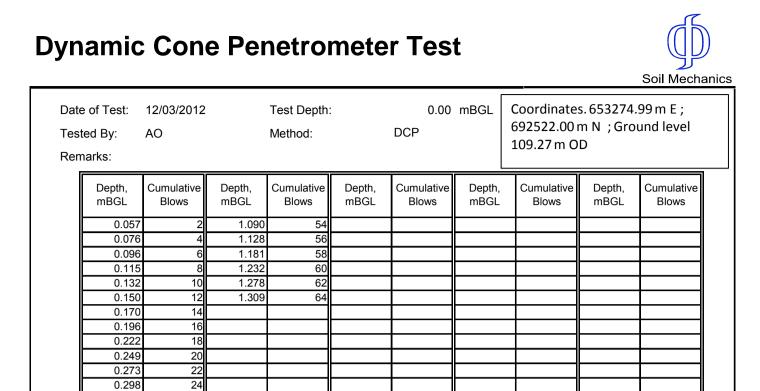
CBR1 To 1


Soakaway Tests

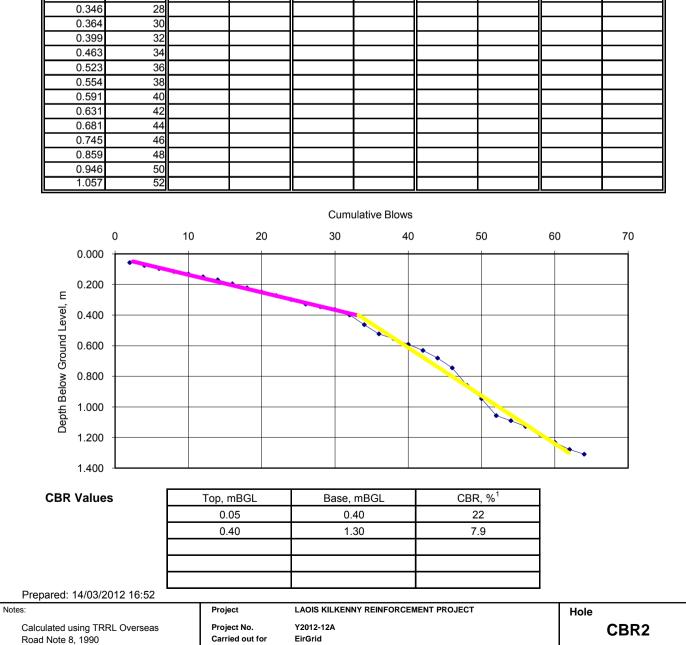
SKWY/SA1/1 SKWY/SA2/1 SKWY/SA3/1


Soakaway Test

Soakaway Test



Soakaway Test



Date of Test: Tested By:	12/03/2012 AO		Test Depth Method:	:	0.00 DCP	mBGL	Coordinates 692491.13 r	n N;Gro	
Remarks:							109.71 m OI	0	
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.08	6 2	0.772	54						
0.13		0.783							
0.17		0.805 0.825							
0.19		0.825							
0.23		0.850							
0.26		0.858	66						
0.30		0.866							
0.35		0.875							
0.38		0.895 0.915							
0.47		0.938							
0.54		0.962	78						
0.57		0.982							
0.60		1.013							
0.63		1.042 1.073	84 86						
0.68		1.105							
0.70		1.135							
0.71		1.163							
0.72		1.192							
0.72		1.223 1.263							
0.73		1.203					+		
0.75		1.336							
0.76									
0.00	0	20	40		ulative Blows 60	80	100	0	120
0.20	•								
E 0.40 0.60 0.80 0.80 0.80 1.00 0.80	0								
۳ 0.60 و	0	•	*						
un 10.80	0		*		•				
ee 1.00	0								
u the 1.20	0								
□ 1.40	0							•	
1.60	0								
CBR Valu	ies	Top,	mBGL	Base,	mBGL	С	BR, % ¹		
			10 70		.70		13		
	├				.90		47		
				1.	.30		17		
Prepared: 14/03	8/2012 16:52								
	"LVIZ IU.UZ	Proj	ect	LAOIS KILKEN			ст	Hole	
Calculated using T Road Note 8, 1990			ect No. ied out for	Y2012-12A EirGrid					CBR1

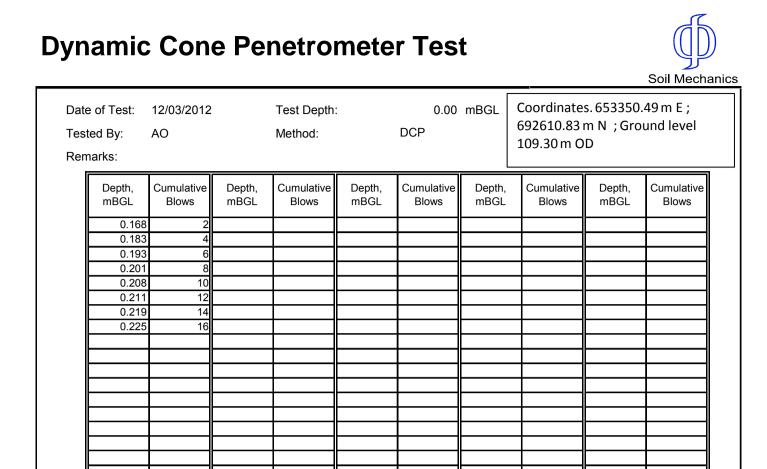
0.328

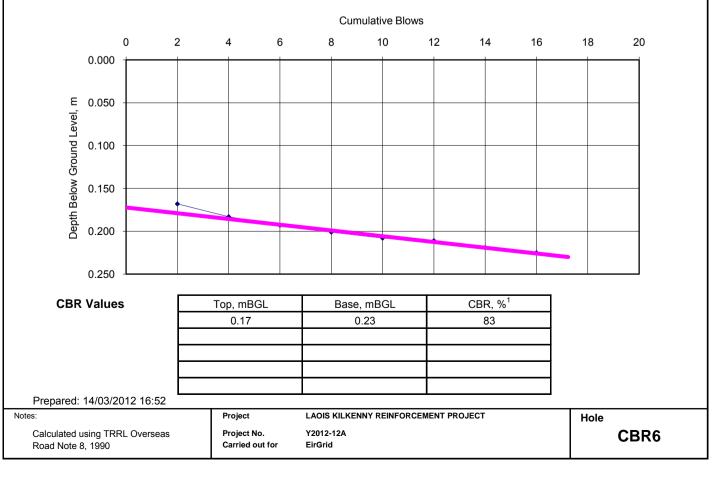
26

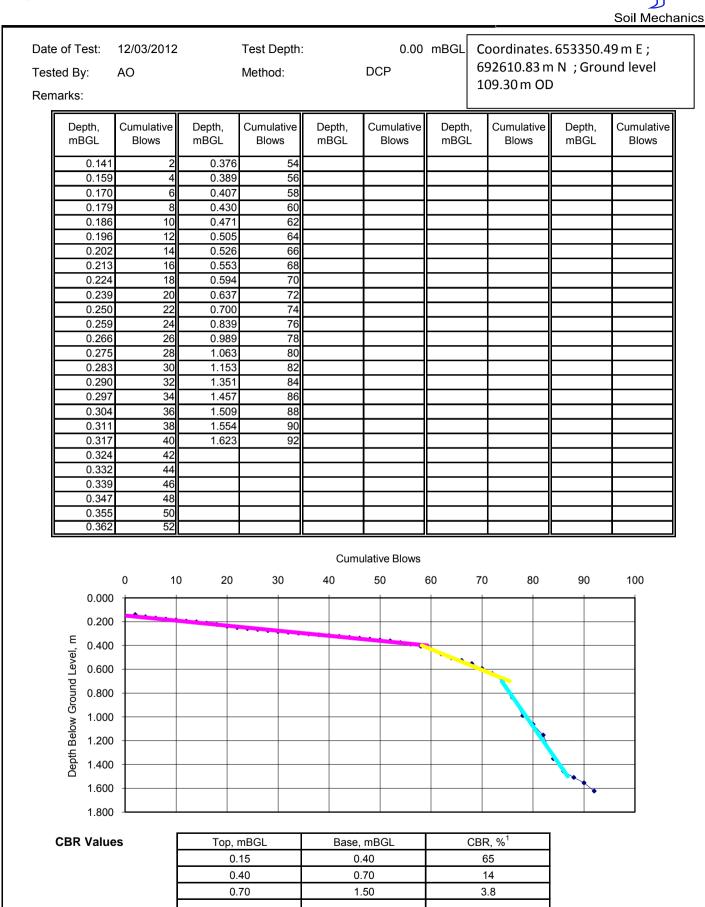
Date of Test	: 12/03/2012		Test Depth:		0.00	mBGL	Coordinate		
Tested By:	AO		Method:		DCP		692544.89 108.96 m C		
Remarks:									
Depth, mBGL		Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
	108 2 136 4								
0.1									
0.1									
0.1									╂────┨
0.2	242 14								
0.2	259 16 273 18								
0.2	289 20								
	298 22 306 24								
	313 26								
0.3									
0.3									
									<u> </u>
									
0.0	000	5	10	Cum 15	ulative Blows 20		25	30	35
_ 0.0	050								
Depth Below Ground Level, m	100								
pund Le	150								
0 9 ≥ 0.2	200								
Beo D	250								
Deptl	300								
	350							•	
							1	I	
CBR Va	lues		mBGL 0.10		, mBGL .30	CE	3R, % ¹ 27		
			0.30		.33		94		
		ļ							
Prepared: 14/0	03/2012 16:52							l	
Notes:					INY REINFORCEN	MENT PROJEC	т	Hole	_
Calculated using Road Note 8, 19	Calculated using TRRL Overseas Road Note 8, 1990			Y2012-12A EirGrid					CBR3

Date of Test:	12/03/2012		Test Depth	:	0.00	mBGL	Coordinates		
Tested By:	AO		Method:		DCP		692544.89 m N ;Ground level 108.96 m OD		
Remarks:							100.501110		
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.131		1.206							
0.172		1.260 1.311							
0.270) 8	1.379	60						
0.312		1.432							
0.323		1.472 1.499							
0.335		1.533							
0.348		1.580							
0.363		1.613	72						
0.378									
0.412									
0.426									
0.444									
0.400									
0.543	3 36								
0.617									
0.767									
0.915									
0.982	2 46					-			
1.044									
1.086									
0.000 0.200 0.400 0.800 0.800 1.000 0.800 1.000 1.400 1.600 1.800 CBR Valu		0.	20	30	ulative Blows 40 	50	60	70	
			30 50		.45 .80		40 4.2		
			80		.60		9.4		
Prepared: 14/03/	2012 16:52	•							
Notes: Calculated using TF	RI Oversees	Proj Proj				MENT PROJEC	т	Hole	
Road Note 8, 1990	UVE13E03	-	Project No. Y2012-12A Carried out for EirGrid					CBR3A	

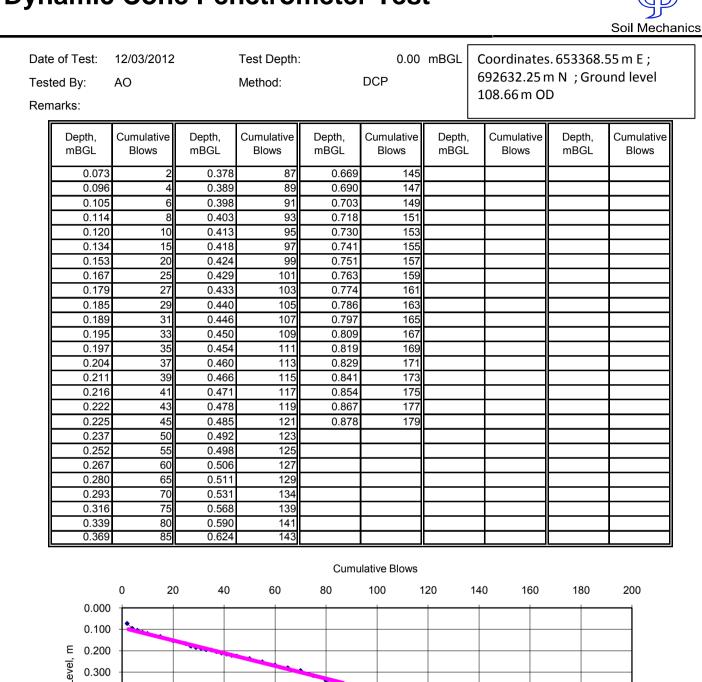
Date of Test:	12/03/2012	!	т	est Depth	:	0.00	mBGL	Coordinate 692567.39		
Tested By:	AO		N	lethod:		DCP		109.00 m C		
Remarks:						1				
Depth, mBGL	Cumulative Blows	Dep mB0		Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.235 0.328										
0.346										
0.368										
0.435 0.465										
0.474										
					Cum	ulative Blows				
	0	2		4	6	8	10	12	14	16
0.000				+						
0.050										
8 0.150										
P 0.200										
පි 0.250			_							—
E 0.100 0.150 0.200 0.250 0.300 0.350 0.350 0.400			$\overline{}$							
≞ 0.350										
a 0.400							_			
0.450)									
0.500										
							T			
CBR Value	CBR Values			BGL		mBGL	CE	3R, % ¹		
	(0	.47		11		
Prepared: 14/03/2	2012 16:52		Project		LAOIS KILKENNY REINFORCEMENT PROJECT					
Notes: Calculated using TR Road Note 8, 1990	Calculated using TRRL Overseas			No. I out for	Y2012-12A EirGrid		WENT PROJEC	•	Hole	CBR4


Date of Test:	12/03/2012		Test Depth:		0.00	mBGL	Coordinate		
Tested By:	AO		Method:		DCP 1092307.39				und level
Remarks:								_	
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.161									
0.696									
0.752									
0.876									
1.062	2 14								
1.179									
1.360	20								
1.402									
1.492 1.548									
1.595									
				Cum	ulative Blows				
	0	5	10		15	20	2	5	30
0.000									i
0.200									
ୁ 0.400 ହ)								
E 0.400 Period 0.600 0.800 0.800 0.800 0.800 0.800 0.800 1.200 1.200 1.400)								
U8.0)								
ູ້ ອັ > 1.000)								
<u>о</u> В 1.200									
다.200 두						•			
ස් 1.400 ර)								
1.600)								
1.800)								
CBR Valu	es -	Ton	, mBGL	Base	, mBGL	CI	3R, % ¹		
•Dit faid			0.20		.70		1.1		
		(0.70	1	.60		5.7		
Prepared: 14/03/	2012 16:52								
Notes:	Pro	oject	LAOIS KILKEN	INY REINFORCE	IENT PROJEC	т	Hole		
Calculated using TF Road Note 8, 1990	Calculated using TRRL Overseas Road Note 8, 1990		oject No. rried out for	Y2012-12A EirGrid					CBR4A




Date of Test: Tested By:	12/03/2012 AO	2	Test Depth Method:	:	0.00 DCP	mBGL	Coordinate: 692590.091	m N ;Gro	
Remarks:							109.38 m O	D	
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.0									
0.1									
0.1	47 8								
0.1									
									
									<u> </u>
				Cum	nulative Blows				
	0	2	4	6	8		10	12	14
0.0	00								
0.0	20								
E0.0	40								
0.0 Leve	60								
0.0 0.0 0.0 0.1 0.1 0.1 0.1									
0.0 0 ≥ 0.1									
8 0.1		_							
0.1	60								
0.1	80								
CBR Val	ues	Тор	o, mBGL	Base	, mBGL	С	BR, % ¹	Í	
			0.13	1).16		100		
		┣────							
_									
Prepared: 14/0 Notes:	3/2012 16:52	Pr	roject			MENT PROJE	ст	Hole	
Calculated using	TRRL Overseas	Pr	roject No.	Y2012-12A			-	пое	CBR5
Road Note 8, 199	0	Ca	arried out for	EirGrid					

Date of Test:	12/03/2012		Test Depth	:	0.00 DCP	mBGL	Coordinate 692590.09		
Tested By: Remarks:	AO		Method:		DCP		109.38 m O		
				I		[
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.082									
0.096									
0.111	8								
0.120									<u> </u>
0.139	14								
0.146									
0.153									
0.165	22								
0.171									
0.189									
0.195									
0.200	32								
				Cur	nulative Blows				
	0	5	10	15	20		25	30	35
0.000									
E 0.050									
	,								
E 0.050 Para 0.100 0.100 0.150 0.200									
PU 0.100)								
Ū >									
<u>ð</u> 0.150)								
pthE									
<u>a</u> 0.200) +								
0.250)								
CBR Valu	es [Ton	, mBGL	Rase	e, mBGL		3R, % ¹		
OBIT Value			0.07	1).20		73		
Prepared: 14/03/	2012 16:52			I					
Notes:			oject oject No.	LAOIS KILKE	NNY REINFORCE	MENT PROJEC	т	Hole	
Calculated using TF Road Note 8, 1990	Calculated using TRRL Overseas Road Note 8, 1990			Y2012-12A EirGrid					CBR5A





 Prepared:
 14/03/2012 16:52

 Notes:
 Project
 LAOIS KILKENNY REINFORCEMENT PROJECT

 Calculated using TRRL Overseas Road Note 8, 1990
 Project No. Carried out for
 Y2012-12A EirGrid
 Hole

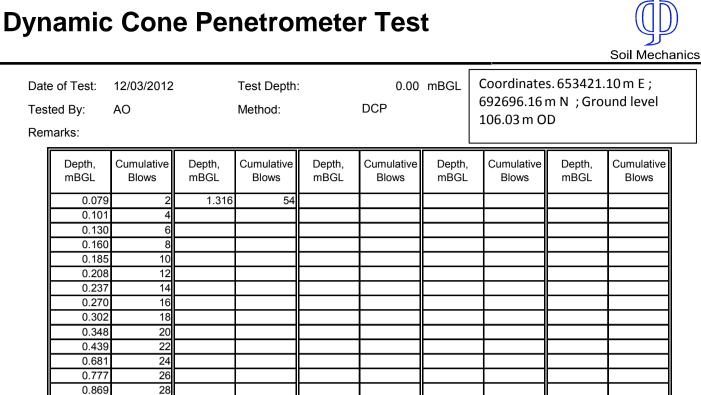
Depth Below Ground Level, . 0.400 0.500 0.600 0.700 0.800 0.900 1.000 **CBR Values** Top, mBGL Base, mBGL CBR, %¹ 0.10 0.35 95 0.55 96 0.40 15 0.55 0.70 0.70 0.90 47 Prepared: 14/03/2012 17:13 Notes: Project Hole Calculated using TRRL Overseas Project No. CBR7 Road Note 8, 1990 Carried out for •

Soil Mechanics

Date of Test:	12/03/2012		Test Depth:		0.00	mBGL	Coordinate		
Fested By:	AO		Method:		DCP		692652.70		round level
	-						108.15 m C	D	
Remarks:									
Depth,	Cumulative	Depth,	Cumulative	Depth,	Cumulative	Depth,	Cumulative	Depth,	Cumulative
mBGL	Blows	mBGL	Blows	mBGL	Blows	mBGL	Blows	mBGL	
0.13	20 2	1.100	54						
0.13		1.100	56 56						
0.36		1.133	58					·	
0.53		1.150	60						
0.65		1.171	62						
0.72		1.194	64						
0.77		1.215	66						
0.80		1.236	68						
0.84		1.257	70						
0.8		1.281	72						
0.88		1.307 1.342	74 76						
0.9		1.342	78						
0.93		1.421	80						
0.94		1.449	82						
0.96		1.471	84						
0.97	73 34	1.491	86						
0.98		1.509	88						
0.99		1.530	90						
1.00		1.552	92						
1.02		1.572	94						
1.03									
1.04									
1.0									
1.08									
0.0	0 10) 20	30	Cum 40	ulative Blows 50	60	70 80	90	100
0.20 E o 4									
د.0 کے او									
0.6 P	00								
8.0 B			••••						
0.40 0.60 0.80 0.80 0.80 0.80 0.80 0.80 0.8									
41 49 1.40									
ے 1.6									_

CBR Values Top, mBGL Base, mBGL CBR, %¹ 0.30 0.75 4 0.80 1.20 38 1.20 1.55 18

1.800


Prepared: 14/03/2012 16:52			
Notes:	Project	LAOIS KILKENNY REINFORCEMENT PROJECT	Hole
Calculated using TRRL Overseas Road Note 8, 1990	Project No. Carried out for	Y2012-12A EirGrid	CBR8

Date of Test:	12/03/2012	2	Test Depth:		0.00	mBGL	5. 653403.26 m E ;				
Tested By:	AO		Method:		DCP			ound level			
Remarks:							107.57 m C	U			
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows		
0.1	-	1.155									
0.2		1.182					_				
0.2		1.211 1.239									
0.4		1.269									
0.4		1.300									
0.5		1.329 1.359									
0.7		1.393									
0.8	29 20	1.430	72								
0.8		1.466									
0.8		1.506 1.546									
0.9		1.540									
0.9	49 30	1.616									
0.9											
0.9											
1.0											
1.0											
1.0											
1.0											
1.0											
1.1											
					ulative Blows						
0.0		10 2	0 30	40	50	60	70	80	90		
0.2	00										
도 	00										
۵.4 (Level Below Debth Below Debth Below Debth Below Debth Below 1.4 Debth Below Debth Below 1.4	00										
0.8 Juni	00										
ل م 1.0	00										
a 1.2	00						•				
the pth de 1.4	00										
ے 1.6											
1.8											
CBR Val	ues	Top.	mBGL	Base	, mBGL	с	BR, % ¹				
			10		.85		6.2				
		0.	85	1	.10		33				
		1.	10	1	.60		16				
Prepared: 14/0	3/2012 16:52										
Notes:		Proj	ect	LAOIS KILKEN	INY REINFORCE	MENT PROJE	ст	Hole			
Calculated using Road Note 8, 199		-	ect No. ied out for	Y2012-12A EirGrid					CBR9		

Date of Test: Tested By:	12/03/2012 AO		Test Depth: Method:		mBGL	Coordinates. 653421.10 m E ; 692696.16 m N ; Ground level						
Remarks:					DCP		106.03 m O	D				
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows			
0.051												
0.085												
0.118												
0.140												
0.157	7 14											
0.158	3 16											
									+			
									+			
	0	2	4 6	Curr 8	ulative Blows 10	12	14	16	18			
0.000) <u> </u>											
0.020	D											
<u>۲</u> 0.040	о ——											
Level 1 (1997) Level 1 (1997)												
UD 0.080												
0.100)											
B 0.120)											
de 0.140	D											
0.160	b											
0.180												
	-					•						
CBR Valu	es		o, mBGL		mBGL	С	BR, % ¹					
			0.05	0	.15		25					
Prepared: 14/03/	2012 16.52											
Notes:	2012 10.02	Р	roject	LAOIS KILKEN		MENT PROJE	ст	Hole				
Calculated using TI Road Note 8, 1990			roject No. arried out for		CBR10							

Cumulative Blows 0 10 20 30 40 50 60 0.000 0.200 Ε Depth Below Ground Level, 0.400 0.600 0.800 1.000 1.200 1.400 **CBR Values** Top, mBGL Base, mBGL CBR, %¹ 0.35 0.05 17 0.35 1.10 3.4 1.10 1.30 27

Prepared: 14/03/2012 16:52

1.027

1.113

1.139

1.164

1.185

1.205

1.224

1.240

1.258

1.280

1.290

1.306

30

32

34

36

38

40

42

44

46

48

50 52

Notes: Project LAOIS KILKENNY REINFORCEMENT PROJECT Hole Y2012-12A Calculated using TRRL Overseas Project No. CBR10A Carried out for EirGrid Road Note 8, 1990

ENCLOSURE C GEOTECHNICAL LABORATORY TEST RESULTS

Index Properties – Summary of Results	INDX 1
Particle Size Distribution Analyses	PSD 1 to 13
Unconsolidated Undrained Triaxial Compression Tests – Summary of Results	UUSUM 1

Chemical Tests – Summary of Results

CHEM 1

Project Name

Project No. Y2012-12A

LAOIS KILKENNY

Environmental Scientifics Group

Details of Report Contents

Tests in the following list marked * are not UKAS accredited

ITEM	Sheet Nos	Comments
Covering letter	page(s) 1 to 1	
Contents	page(s) 1 to 1	

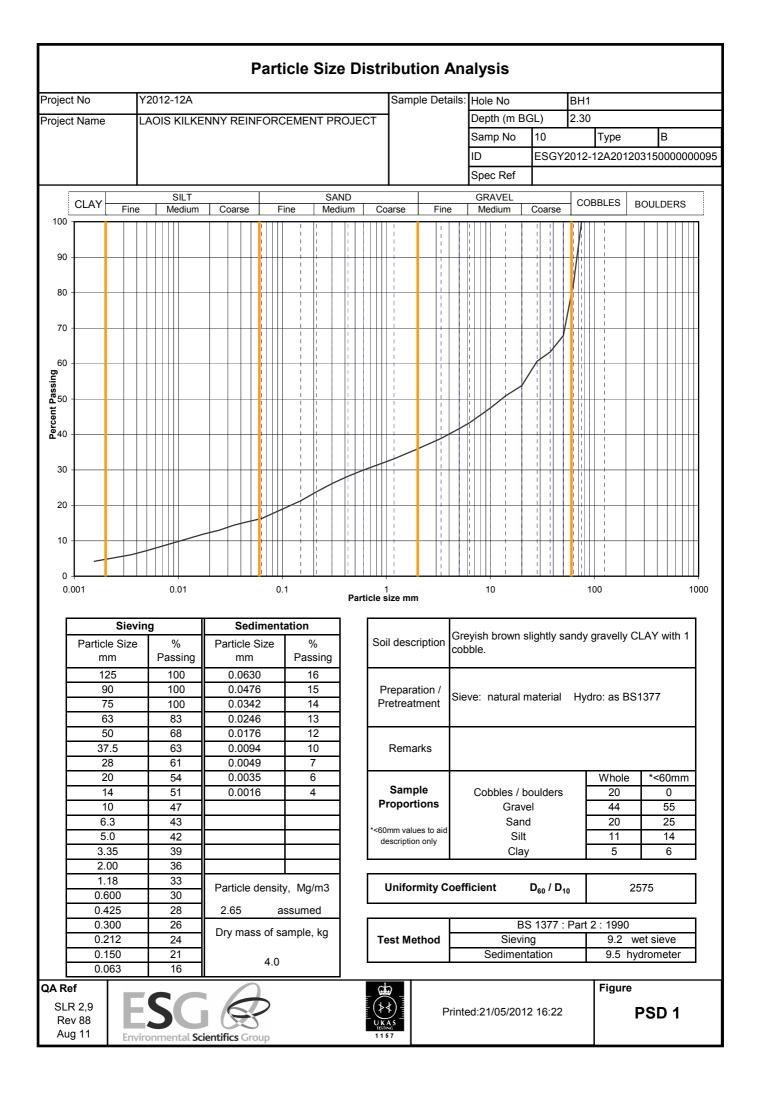
SOIL TESTS Index Properties - Summary of Results INDX 1 to 1 Chemical Tests - Summary of Results CHEM 1 to 1 UU triaxial compression test - Summary of Results UUSUM 1 to 1 Particle Size Distribution Analyses PSD 1 to 13 END OF REPORT . Total number of pages in this report 18 Ϋ́ -

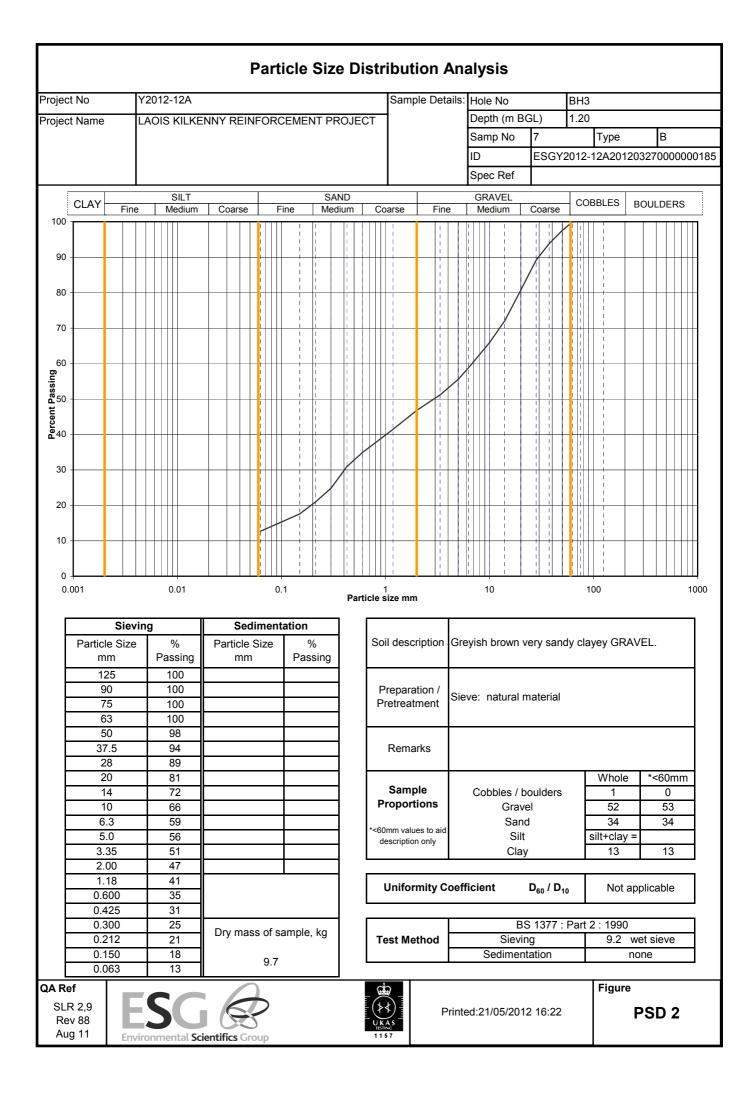
CHEMICAL TESTS - SUMMARY OF RESULTS

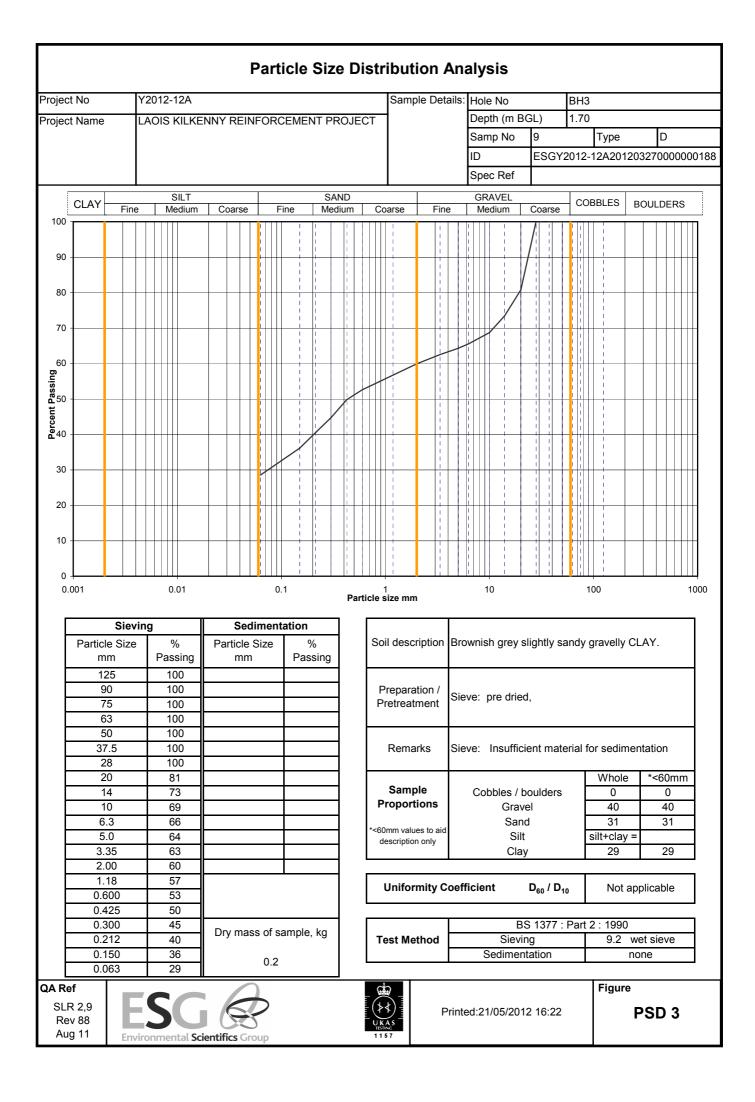
Project No Project Name

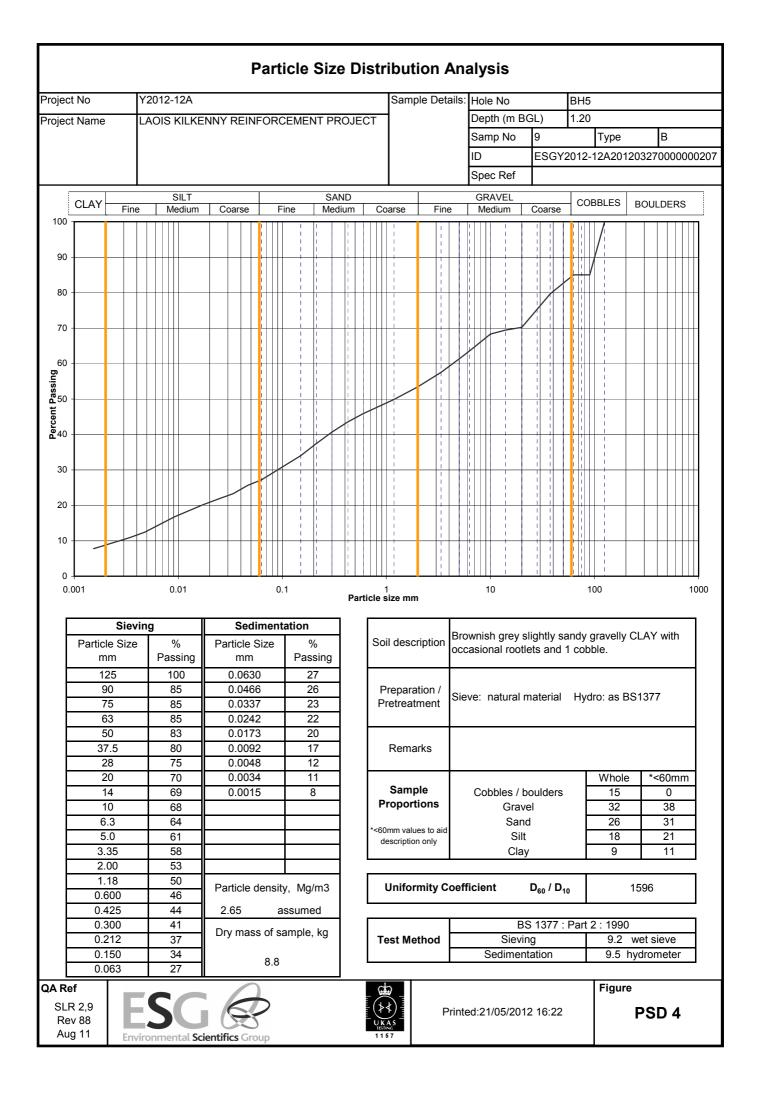
Y2012-12A LAOIS KILKENNY REINFORCEMENT PROJECT

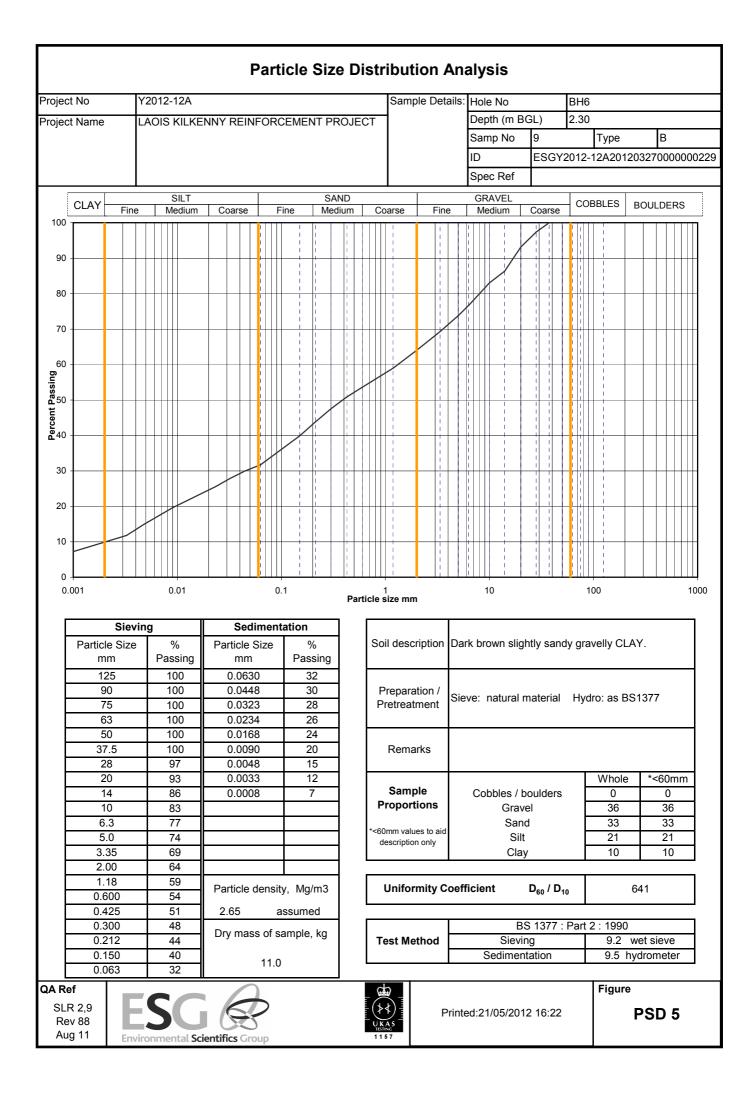
		Sam	ple			Org	LOI	pН		Sulphate as SO ₄			SD	1 options	CC	2 Chlo	ride, Cl	<2	
Hole No. N	No.		h (m)	type	Soil Description				Preparation/test *	2:1 water sol.	ground water	acid sol.	TS	Mg mg NO ₃ mg NH₄	/L /L	water sol.	acid sol.	mm	Remark
		from	to		Brownish grey slightly	%	%		Pre	g/L	g/L	%	%		%	%	%	%	
BH1	6	0.90	1.20	В	sandy slightly gravelly CLAY. Dark grey slightly sandy			8.2	1+3	0.07								54	
BH3	13	3.00	3.50	В	slightly gravelly CLAY.			8.2	1+3	0.26								65	
BH4	18	1.10		w	Dark grey slightly sandy			7.0	2+3		0.06								
BH4	14	3.20	3.70	В	slightly gravelly CLAY.			8.2	1+3	0.26								69	
BH6	11	3.50	4.00	В	Brownish grey slightly sandy slightly gravelly CLAY.			8.1	1+3	0.05								81	
BH8	6	0.60	1.10	В	Greyish brown slightly sandy slightly gravelly CLAY.			8.2	1+3	0.11								73	
BH10	9	2.20	2.70	В	Grey gravelly slightly clayey SAND with one cobble.			8.4	1+3	0.21								50	
TP3	3	1.50	1.60	В	Brownish grey slightly sandy slightly gravelly CLAY with 1 cobble.			8.1	1+3	0.07								65	
TP4	4	2.00	2.10	В	Brown silty very gravelly SAND. Dark grey slightly gravelly			8.3	1+3	0.08								39	
TP5	4	2.50	2.60	В	sandy CLAY.			8.2	1+3	0.07								69	
TP6	3	1.90	2.00	В	Grey slightly sandy gravelly CLAY with 1 cobble.			8.1	1+3	0.24								53	
6 1377 : definitive Org Organic r (s-sulphid LOI Mass loss CO ₂ Carbonat	matter conte es, c-chloride s on ignition	ent is identified n at 440 ⁰	уС 1)		 Sulphate tests prepara BS 1377:Part 3:1990:cla BS 1377:Part 3:1990:cla BS 1377:Part 3:1990:cla 	lause 5.: ause 5.4	3	4. TRL 5. TRL	.447 -	2 acid s	r soluble s soluble su	Iphate		BR TS Mg NO	Tota Solu	l Digest S Sulphur t ole Magne ole Nitrate	o BR279 sium to E	/ EN ISC 8R279, co	015178 olorimetric
Cl Chloride	content				< 2mm material passing 2	mm siev	e							NH	t quali	ative		Tabl	e
SLR 3 Rev 95 Aug 11	E	S	G		\mathbf{S}								Prir	nted:21/0	5/2012	16:20		с	HEM 1

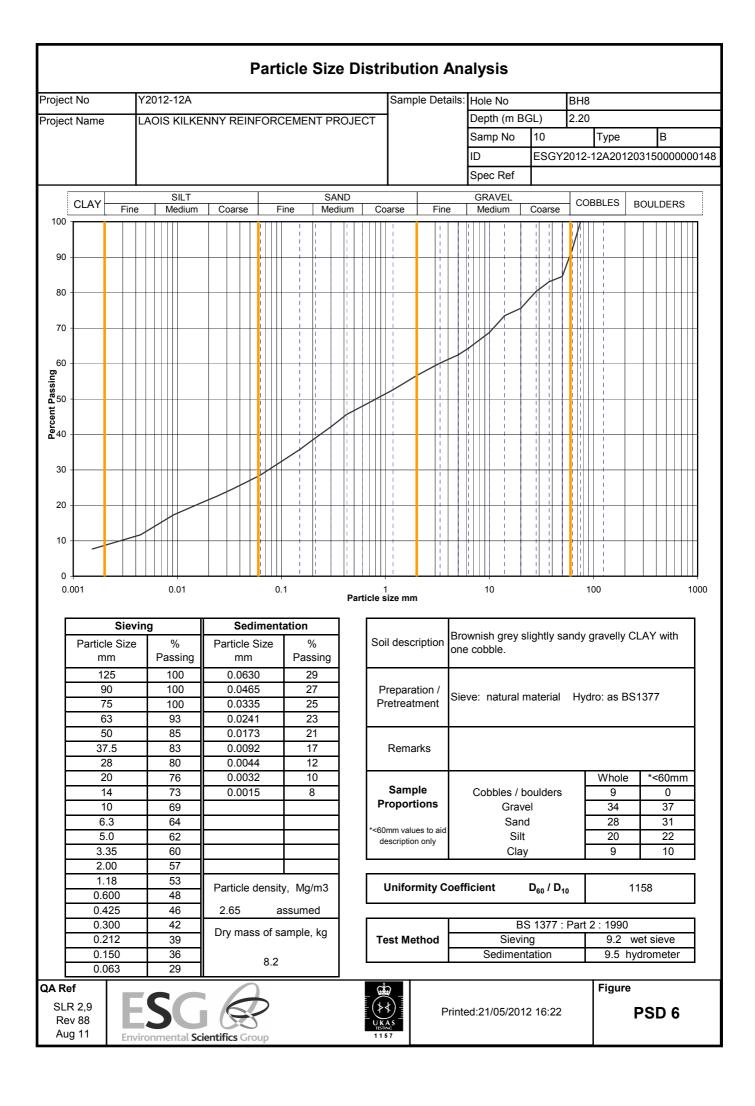

INDEX PROPERTIES - SUMMARY OF RESULTS

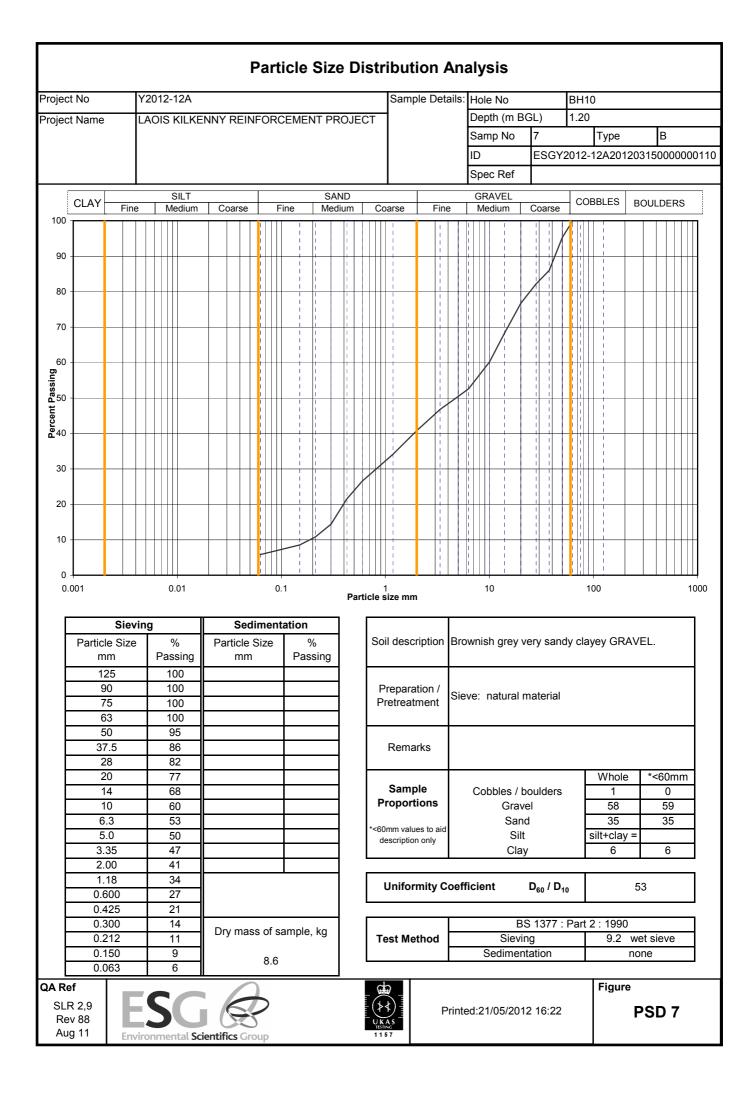

Y2012-12A LAOIS KILKENNY REINFORCEMENT PROJECT

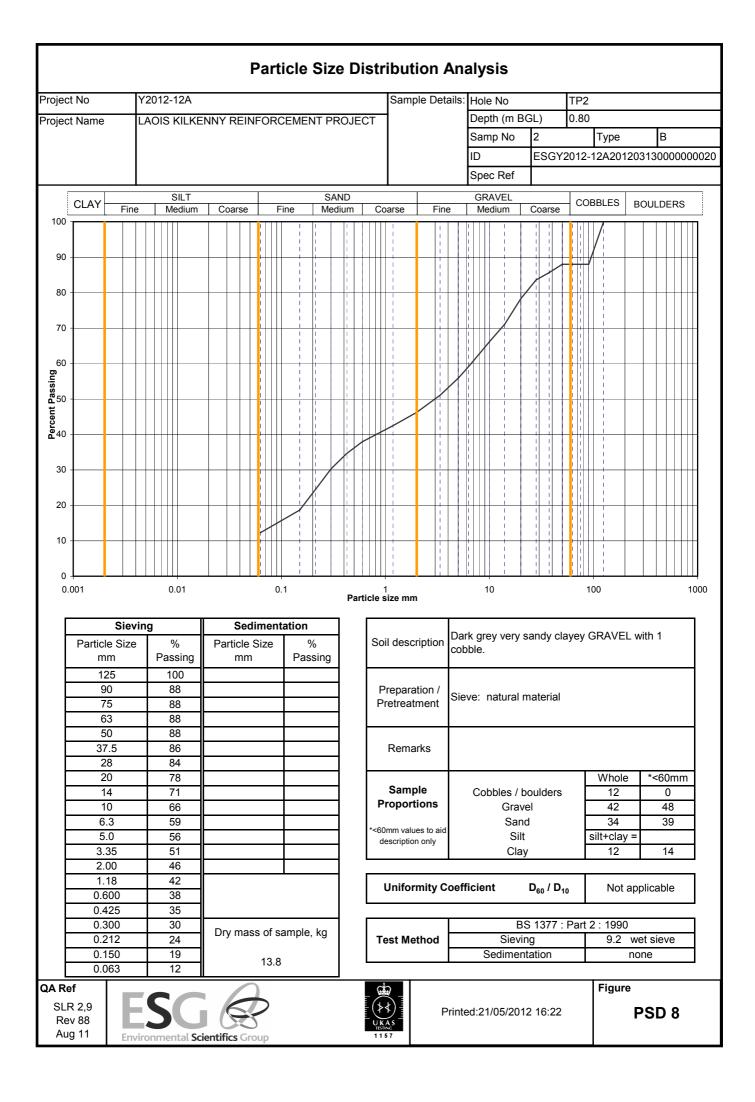

Project Name

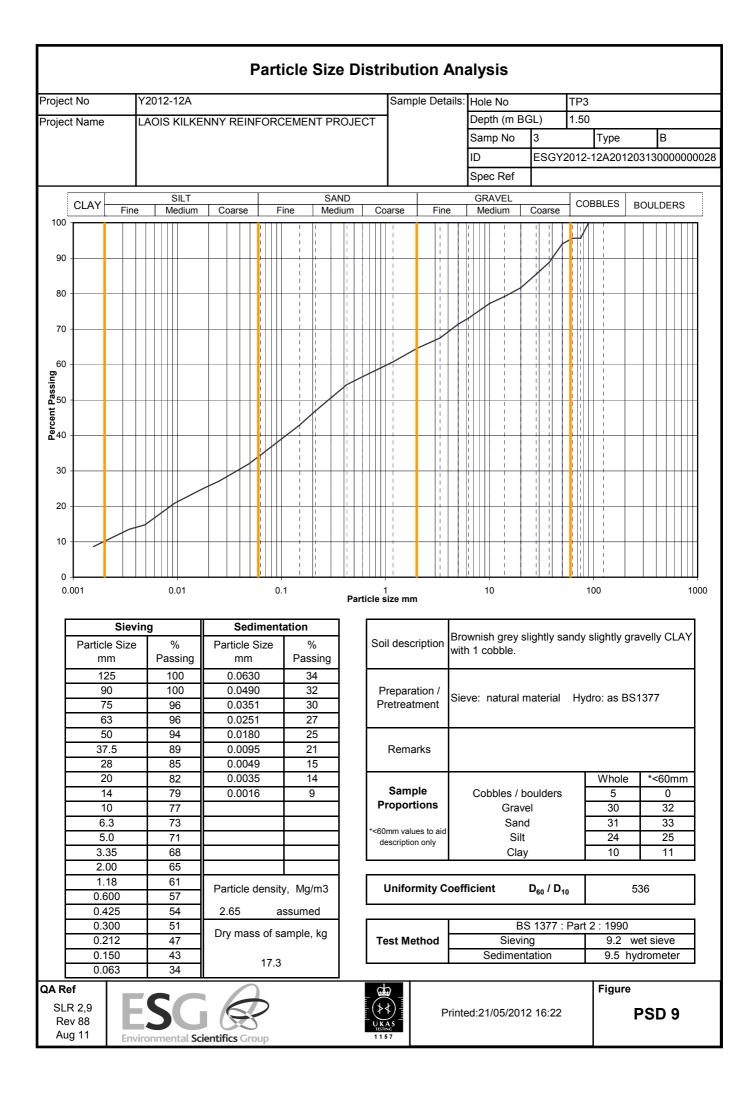

Project No

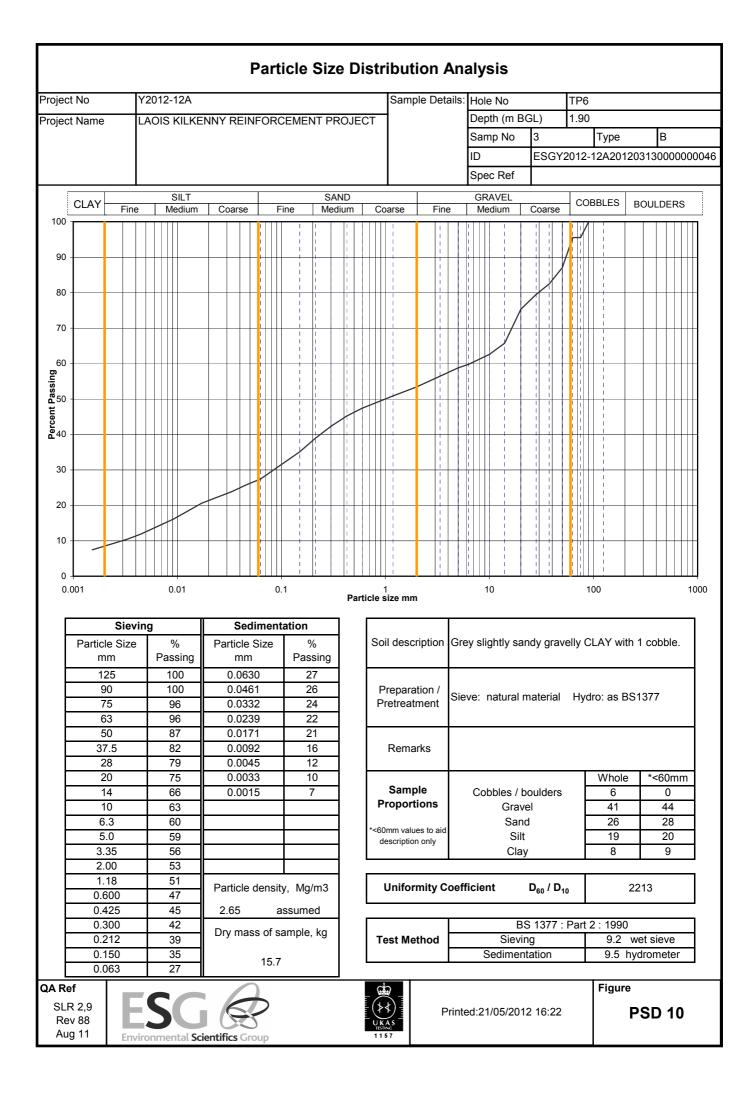

		Sam	ole			р	p_{d}	w	< 425	WL	W _P	I _P	p _s	
Hole No.		Dept	h (m)		Soil Description				µm sieve	_			, -	Remarks
	No.	from	to	type		Ма	/m ³	%	%	%	%		Mg/m ³	
BH1	12	3.30		D	Dark grey slightly gravelly slightly clayey SAND.			6.7		,-				
BH1	14	3.80	4.30	В	Brownish grey slightly sandy slightly gravelly CLAY.				57 s	23 a	13	10		
BH2	8	1.20	1.20	в	Brown gravelly slightly clayey SAND.			14	71 s	20 b	NP			
BH2	15	3.80		D	Grey slightly sandy slightly gravelly CLAY.			13						
BH2	16	4.20	4.70	В	Dark grey slightly gravelly sandy CLAY.				64 s	20 a	12	8		
BH3	12	2.65		D	Grey slightly sandy gravelly CLAY.			9.2						
BH4	10	2.15		D	Greyish brown slightly sandy gravelly CLAY.			6.4						
BH4	11	2.20	2.70	в	Grey slightly sandy slightly gravelly CLAY.				64 s	21 a	12	9		
BH4	15	4.00		D	Brownish grey slightly sandy slightly gravelly			10						
BH4	19	5.60	6.00	В	CLAY. Brownish grey sandy gravelly very clayey				18 s	24 a	14	10		
BH4	20	6.00		D	COBBLES. Dark grey slightly gravelly sandy CLAY.			12	-	-				
BH5	9	1.20	1.70	В	Brownish grey slightly sandy gravelly CLAY			-	44 s	21 a	13	8		
BH5	8	1.20	1.65	D	with occasional rootlets and 1 cobble. Dark brownish grey slightly sandy slightly			6.7	. 0			-		
BH5	15	4.15		D	gravelly CLAY. Dark grey slightly sandy slightly gravelly			10						
BH5	16	4.20	4.70	В	CLAY. Grey slightly sandy slightly gravelly CLAY.			10	73 s	25 a	14	11		
BH6	6	0.60	1.10	в	Greyish brown slightly sandy gravelly CLAY.			9.6	133	25 a	14			
BH6					Greyish brown slightly sandy slightly gravelly				49.0	22.0	10	0		
	7	1.20	1.70	В	CLAY. Greyish brown slightly sandy slightly gravelly			9.3	48 s	22 a	13	9		
BH7	10	1.80	2.20	В	CLAY. Greyish brown slightly sandy slightly gravelly			13	62 s	23 a	14	9		
BH8	7	1.20	1.65	В	CLAY. Brownish grey slightly sandy slightly gravelly				59 s	24 a	14	10		
BH8	8	1.70		D	CLAY. Dark grey slightly sandy gravelly CLAY.			7.8						
BH8	14	4.20	4.70	В	Dark brownish grey slightly gravelly sandy			10	43 s	23 a	13	10		
BH9	8	0.80		D	CLAY. Brownish grey slightly sandy slightly gravelly			8.4	60 s	22 a	12	10		
BH9	16	3.20	3.70	В	CLAY.			11	60 s	23 a	14	9		
BH10	11	3.00	3.50	В	Grey slightly sandy slightly gravelly SILT with occasional rootlets. Brown slightly gravelly sandy CLAY.			9.5	66 s	20 a	15	5		
TP5	2	0.50	0.60	D				9.3	63 s	23 a	14	9		
TP9	4	1.50	1.60	D	Light brown slightly gravelly slightly clayey SAND.			9.7	57 s	18 a	12	6		
					SAND.									
eral notes:	All above	tests carrie bulk dens			: 1990 unless annotated otherwise. See individ		t reports Plastic		her deta	ils. <425um	n prepar	ation		p_s particle density
	p_{d}	dry densi	ity			NP	non - pl	lastic		n from				-g = gas jar
Ref	w	moisture	content		b 1 point cone test	I _P	Plasticit	y Index		s sieve	ed speci	imen		-p = small pyknometer
SLR 1		C			+			_	Printed					Table

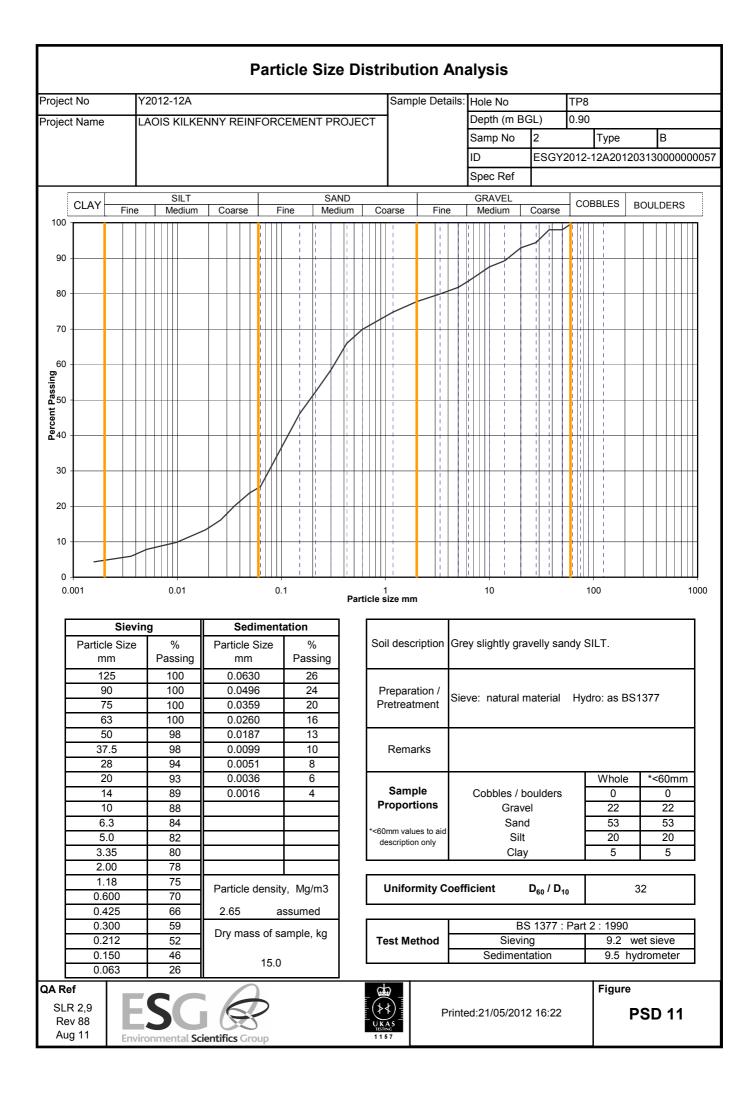


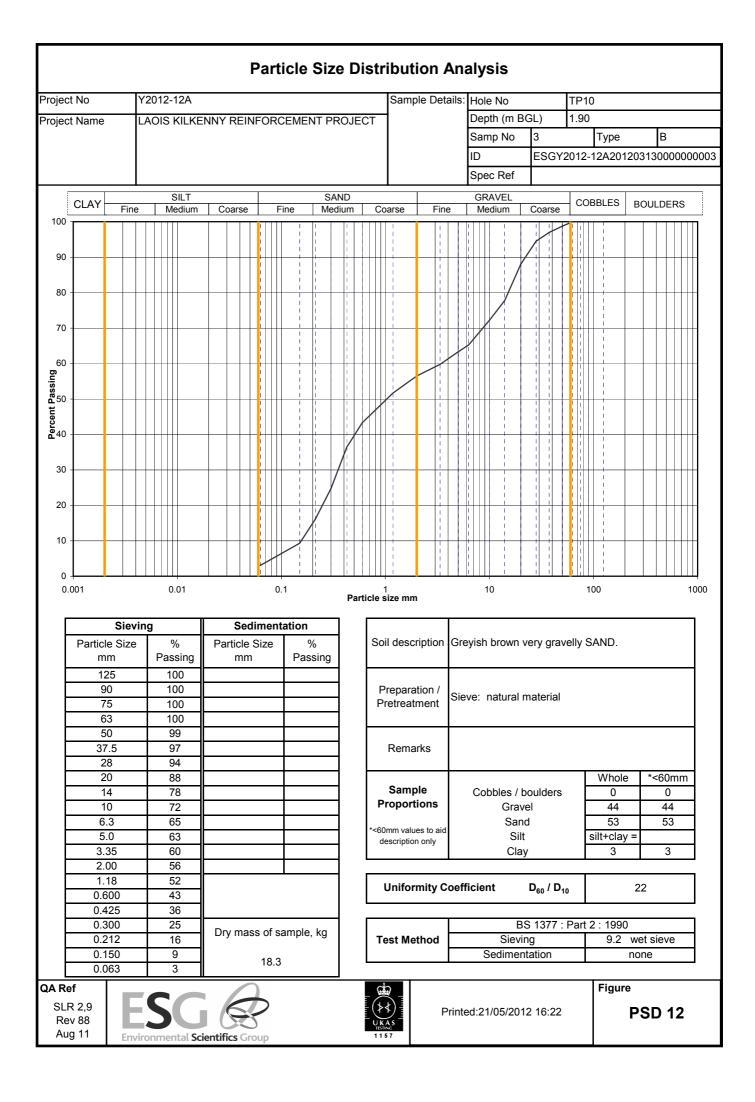














UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

Project No	Projec	ct Nam	e														
Y2012-12A	LAOIS	S KILK	ENNY	REII	NFORCEMENT PROJECT												
		Sam	ple			Den	sity	w	Test	Dia.	Ó ₃	At fail	ure / er	nd of s	tage		
Hole No.	No.	Depth from	n (m) to	type	Soil Description	bulk	dry		type				ó ₁ - ó ₃		D		Remarks
BH4	9	1.70	2.15		Firm to stiff brownish grey sandy gravelly CLAY.	Mg/ 2.39	Ī	% 8.0	UUM	mm 103.6 103.6 103.6	kPa 20 40 80	% 3.0 5.0 19.8	^{kPa} 123 171 304	kPa 62 85 152	E P		
eneral notes:	Tests ca	arried out	in acco	rdance	9 with BS1377: Part 7: 1990, clause	8 for sir	ngle sta	age, cla	use 9 fe	or multis	stage t	ests. Sp	pecime	ns nor	minal	ly 2:1 height	
nend	diamete	er ratio an	d tested	l at a ra	ate of strain of 2%/minute, unless ar	nnotated	l other	wise. Se	e indiv			orts for	further	detail	s.		
gend					in sets of specimens) le specimen	ó ₃ ó ₁ - ó ₃		cell pre deviato				Mode	u tailu	ie		plastic brittle	
		- remoulo				ο ₁ -ο ₃ C _u				s ar stren	ath					compound	
A Ref SLR 2 Rev 71 Mar 12	E	S			ifics Group	<u> </u>				Printe		05/20)12 1(6:21	~	Table	UUSUM 1

ENCLOSURE D GEOENVIRONMENTAL LABORATORY TEST RESULTS

ESG Scientifics Report

Scientifics Report No EFS/123380

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/123380 (Ver. 1)

ESG Geoenvironmental Consulting Carowswood Castlemartyr Co Cork Ireland

Site: Laois Kilkenny Reinforcement Project

The 2 samples described in this report were registered for analysis by ESG on 11-Apr-2012. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 24-Apr-2012

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results Table of PAH (MS-SIM) (80) Results Table of PCB Congener Results GC-FID Chromatograms Table of WAC Analysis Results Analytical and Deviating Sample Overview Table of Method Descriptions Table of Report Notes

On behalf of ESG : Andrew Timms

ftuin

Operations Manager

Date of Issue: 24-Apr-2012

Tests marked '^' have been subcontracted to another laboratory.

ESG accepts no responsibility for any sampling not carried out by our personnel.

	Units :	%	mg/kg	mg/kg	mg/kg	% M/M	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	mg/kg		
	Method Codes :	TMSS	TPHFIDUS	TPHFIDUS	PCBUSECDAR	WSLM59	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMSUS		
	Method Reporting Limits :	0.2	10	10		0.01	10	10	10	20	20	10	10			
	UKAS Accredited :	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes		
LAB ID Number CL/	Client Sample Description	Tot.Moisture @ 105C	MRO by GCFID (AR)	TPH by GCFID (AR)	PCB-7 Congeners Analysis	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (16) by GCMS		
1260665	Y2012-12A Coolnabacky BH9	14.	5 <10) 12	Rec	ų 0.25	i <1(0 <10) <1() <2	0 <2	0 <10	0 <1	0 Re	q	
0																
-																
-																
	ESG &	Client N Contact		ESG Ge		nmental C	Consultin	ng		1			mple A	nalysis		
	Bretby Business Park, Ashby Road										Date Pri	nted		24-	-Apr-2012	
	Burton-on-Trent, Staffordshire, DE15 0YZ			••!-		~	• • • • • • •		t		Report N	lumber		El	FS/123380	
			L	.aois		R	einto	orcem	ent	r	Table Number1					
	Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422															
	Fax 744 (U) 1203 334422										1					

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	ESG Geoenvironmental (Consulting: il enn L ois	ein. ro ect
Sample Details:	Y2012-12A	Number	s12_3380
LIMS ID Number:	CL1260665	Date Booked in:	11-Apr-12
QC Batch Number:	120363	Date Extracted:	19-Apr-12
Quantitation File:	Initial Calibration	Date Analysed:	20-Apr-12
Directory:	1912MS5.PAH\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

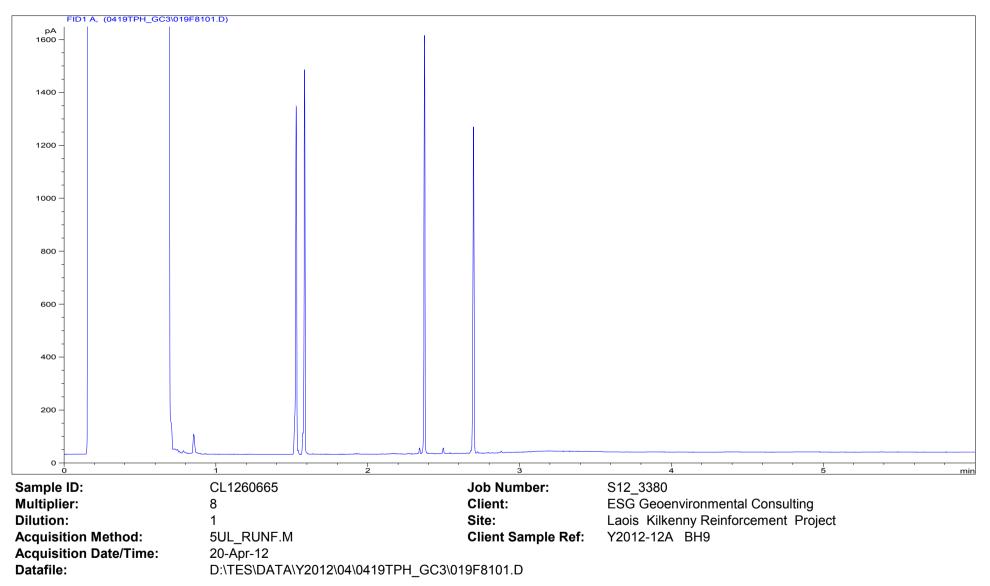
UKAS accredited?: Yes

Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	_	< 0.08	-
Acenaphthene	83-32-9	_	< 0.08	-
Fluorene	86-73-7	_	< 0.08	-
Phenanthrene	85-01-8	_	< 0.08	-
Anthracene	120-12-7	_	< 0.08	-
Fluoranthene	206-44-0	_	< 0.08	-
Pyrene	129-00-0	_	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	-
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	-
Benzo[q,h,i]pervlene	191-24-2	_	< 0.08	-
Total (USEPA16) PAHs	_		< 1.28	

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	108
Acenaphthene-d10	115
Phenanthrene-d10	121
Chrysene-d12	135
Pervlene-d12	143

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	95
Terphenyl-d14	103


Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	ESG Geoenvironmental Consulting: L S12_3380 120106 0419BPCB.GC8 Ultrasonic	ois il enn R	einforcement	ro ect	Matrix: Date Booked Date Extracte Date Analyse	ed:	S OIL 11-Apr-12 19-Apr-12 20-Apr-12	
		* This sampl	e data is not U	JKAS accredit	ted.			
				Со	ncentration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* CL1260665	Y2012-12A Coolna cky BH9	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<								

Petroleum Hydrocarbons (C8 to C40) by GC/FID

Where individual results are flagged see report notes for status.

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	ESC Coconvironmental	Conculting			Leaching Data	
Chefit	ESG Geoenvironmental	Consulting			Weight of sample (kg)	0.090
Contact	Mr A Jaworski				Moisture content @ 105°C (%)	14.5
Contact	IVII A JAWOISKI				Equivalent Weight based on drying at 105℃ (kg)	0.106
Site	Laois Kilkenny Reinforce	mont Project			Volume of water required to carry out 10:1 stage (litres)	0.884
Sile	Laois Kiikeniny Reinioice	ment Project				
Samp	le Description	Report No	Sample No	Issue Date		
Y2012-12A	BH9	s12 3380	CL/1260665	24-Apr-12		
12012 12/1	5110	0.12_0000	011200000	217.0112		

				Landfill Waste	Acceptance Crite	ria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.25	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.05	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.035	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	14	500		
	PAHMSUS	PAH Sum of 17 (mg/kg)		100		
	PHSOIL	pH (pH units)			>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis	10:1 Single Stage Leachate	Calculated cumulative amount leached @ 10:1	BSEN 1	ccceptance Criteri 12457/2 @ L/S 10 mg/kg (dry weigh	-
Ac			mg/l except ⁰⁰	mg/kg (dry weight)			
U	WSLM3	pH (pH units) °°	11.4	Calculated data not UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) ⁰⁰	888				
U	ICPMSW	Arsenic	<0.001	<0.01	0.5	2	25
Ν	ICPWATVAR	Barium	0.24	2.4	20	100	300
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5
U	ICPMSW	Chromium	0.03	0.3	0.5	10	70
U	ICPMSW	Copper	0.02	0.2	2	50	100
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.013	0.13	0.5	10	30
U	ICPMSW	Nickel	0.003	0.03	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.003	0.03	0.06	0.7	5
U	ICPMSW	Selenium	0.003	0.03	0.1	0.5	7
U	ICPMSW	Zinc	0.008	0.08	4	50	200
U	KONENS	Chloride	21	210	800	15000	25000
U	ISEF	Fluoride	0.9	9	10	150	500
U	ICPWATVAR	Sulphate as SO4	18	180	1000	20000	50000
	WSLM27	Total Dissolved Solids			4000	60000	100000
	SFAPI	Phenol Index			1		
Ν	WSLM13	Dissolved Organic Carbon	8.1	81	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S123380

Customer	ESG Geoenvironmental Consulting	Consignment No S28307
Site	Laois Kilkenny Reinforcement Project	Date Logged 11-Apr-2012
Report No	S123380	
		Penart Due 23 Apr 2012

							repu	лгри	e 23-	Apr-2	012	
		MethodID	BTEXHSA	_	CEN Leachate	CustServ	PAHMSUS	PCBUSECDAR	TMSS	TPHFIDUS	-	WSLM59
ID Number	Description	Sampled	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report B	PAH (16) by GCMS	PCB-7 Congeners Analysis	Tot.Moisture @ 105C	MRO by GCFID (AR)	TPH by GCFID (AR)	Total Organic Carbon
	Accredited	to ISO17025	✓	✓			✓		✓	✓	✓	
CL/1260665	Y2012-12A Coolna cky BH9	D										
CL/1260666												

Note: For analysis where the Report Due date is greater than 7	Deviating Sample Key	
days (PAH, Pesticides, PCB, Phenols, Herbicides) or 2 days (BOD)	A The sample was received in an inappropriate container for this analysis	
after the sampling date, although we will do our utmost to prioritise	B The sample was received without the correct preservation for this analysis	
your samples, they may become deviant whilst being processed in	C Headspace present in the sample container	
the Laboratory.	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis	
	E Sample processing did not commence within the appropriate holding time	
In this instance, please contact the Laboratory immediately should	Requested Analysis Key	
you wish to discuss how you would like us to proceed. If you do	Analysis Required	
not respond within 24 hours, we will proceed as originally	Analysis dependant upon trigger result - Note: due date may be affected if triggered	
requested.	No analysis scheduled	
	Analysis Subcontracted	

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid
			digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample NADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

- I.S(g) Insufficient sample to re-analyse, results for guidance only
- Intf Unable to analyse due to interferences
- N.D Not determined
- N.Det Not detected

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

ENCLOSURE E PHOTOGRAPHS

Trial Pits

SA1 to SA3 and TP1 to 12

EirGrid

Carried out for

S1

Sheet 1 of 1

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	S2
	Carried out for	EirGrid	Sheet 1 of

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	S3
	Carried out for	EirGrid	Sheet 1 of 1

Trial Pit Side/Base

Trial Pit Spoil

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP1
	Carried out for	EirGrid	Sheet 1 of 1

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	I rial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP2
	Carried out for	EirGrid	Sheet 1 of 1

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP3
	Carried out for	EirGrid	Sheet 1 of 1

Sheet 1 of 1

EirGrid

Carried out for

Trial Pit Side/Base

Trial Pit Spoil

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP5
	Carried out for	EirGrid	Sheet 1 of 1

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP6
	Carried out for	EirGrid	Sheet 1 of 1

Sheet 1 of 1

EirGrid

Carried out for

Trial Pit Spoil

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - COOLNABACKY	Trial pit
Scale 1 : 50 000	Project No	Y2012-12A	TP10
	Carried out for	EirGrid	Sheet 1 of 1

Notes

Carried out for

EirGrid

ENCLOSURE F

SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT

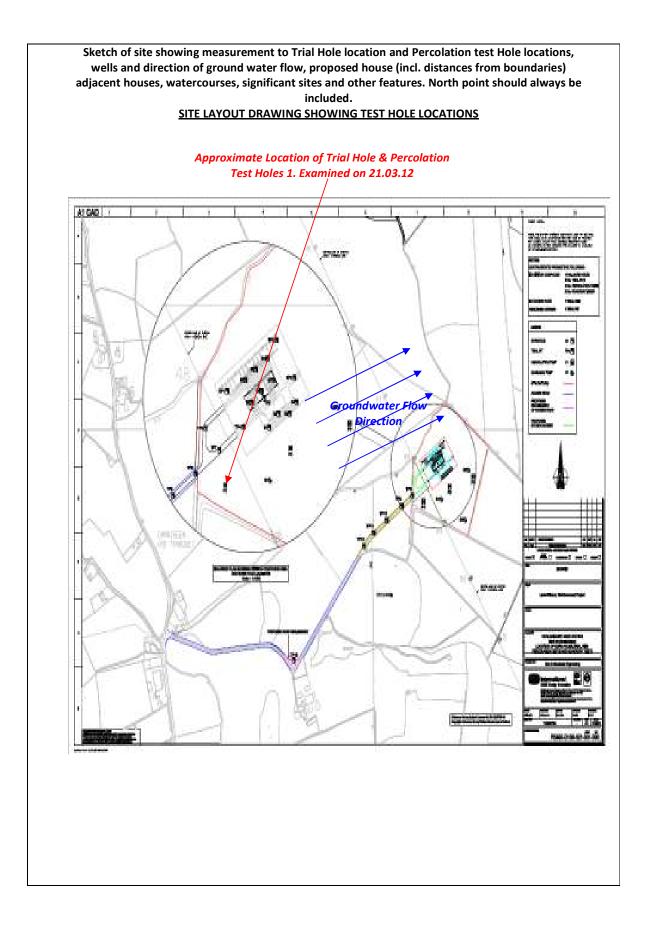
Traynor Environmental Ltd – Report No 12.050 TE

Traynor Environmental Ltd.,	
SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT TE REF: 12/050TE	- 8 LAOIS-KILKENNY REINFORCEMENT PROJECT COOLNABACKY 400KV STATION COOLNABACKY TIMAHOE CO. LAOIS IN ACCORDANCE WITH EPA CODE OF PRACTICE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS SERVING SINGLE HOUSES 2009
Traynor Environmental Ltd.,	Traynor Environmental Ltd Belturbet Business Park, Creeny, Belturbet Co. Cavan Tel: +353 49 9522236 Fax: +353 49 9522808 Web: <u>www.traynorenvironmental.com</u>

SITE CHARACTERISATION FORM FOR AN ON-SITE WASTEWATER TREATMENT SYSTEM

CONTENTS

1.0		GENERAL DETAILS
2.0		DESK STUDY
3.0		ON SITE ASSESSMENT
	3.1	VISUAL ASSESSMENT
	3.2	TRIAL HOLE ASSESSMENT
	3.3	PERCOLATION ("T" Test for Deep Subsoils and Water Table)
		Step 1 Test Hole Preparation
		Step 2 Pre-Soaking Test Holes
		Step 3 Measuring T ₁₀₀
		Step 4 Standard Method (where $T_{100} \le 210$ min)
	3.4	PERCOLATION ("P" Test for Shallow Subsoils and High Water Table)
		Step 1 Test Hole Preparation
		Step 2 Pre-Soaking Test Holes
		Step 3 Measuring P ₁₀₀
		Step 4 Standard Method (where $P_{100} \le 210$ min)
4.0		CONCLUSIONS OF SITE CHARACTERISATION
5.0		RECOMMENDATION
6.0		TREATMENT SYSTEM DESIGN DETAILS
7.0		SITE ASSESSORS DETAILS
8.0		PHOTOGRAPHS OF THE SITE
9.0		EPA/FAS CERTIFICATE
10.0		INSURANCE DETAILS.


1.0 GENERAL DETAILS (From planning application)											
Company				EirGrid							
	Addro	ess				Site Location and Townland					
EirGrid c/o Geotech Specialists Ltd part of Environmental Scientifics Group Carewswood, Castlemartyr, County Cork, Ireland				-	EirGrid Laois-Kilkenny Reinforcement Project Coolnabacky 400kv Station Coolnabacky Timahoe Co. Laois						
Telephone I	Number	N/A	N/A			mber		N/A]		
Email				N/A							
Maximum No. of Employees 6 No. of double bedrooms N/A No. of Single Bedrooms N/A Proposed Water Supply Mains Private Well/Borehole ✓ Group Well/Borehole										N/A	
2.0 DESK STUDY											
Soil Type				Gr	Soil Association - 39 reys 90% Grey brown Podzolics 10%						
Aquifer Categ	Region	Regionally Important				Rkd Locally Important Poor					
Vulnerability Extr		Hg	\checkmark	Moderate	e	Low		High to Low		Unkno	own
Bedrock Type				DPBL - Dinantian Pure Unbedded Limestone							
Name of Public/Group Scheme Water Suppl				ply within 1km			Local Group Water Scheme				
Groundwater Protection Scheme (Y/N)					No	Sou	rce Prot	ection Area	SI		so
Groundwater Protection Response:					R2 ¹						
Presence of Significant sites (Archaeological, natural and historical):						ſ	None identified or evident on the site.				
Past experience in the area:					Variable percolation characteristics in the locality.						
Comments (Integrate the information above in order to comment on: the potential suitability of the site, potential											
targets at risk, and/or any potential site restrictions). R2 ¹ : Acceptable subject to normal good practice (i.e. System selection, construction, operation and maintenance in											
accordance with EPA (2009). Site may be suitable for discharge to ground, if the minimum depths are met on the											
site and if there exists suitable percolation. As the soil type in the area is Gleys (75% of the land area), and as the											
area is mapped as High Vulnerability, surface water may be at risk around the site. Groundwater as a resource will											
be at risk if the minimum depths required are not achieved on the site, or if the percolation rate is too rapid. Older											
wells in the area may also be at risk, if the minimum separation distances are not adhered to. Groundwater and wells are therefore the main targets, following the desk study. Given the response and the aquifer type, the site is											
	potentially suitable for a conventional septic tank system if the minimum depths required are met on the site, if										
the minimum separation distances can be met, and if the percolation rate is adequate. A regionally important									-		
bedrock aquifer will generally have a high permeability, rapid flow velocities and will provide little attenuation.											

		3.0 ON-SITI	ASSESSMEI	NT						
		3.1 Visua	Assessment	t						
Landscape Position		Relatively Flat								
Slope Steep <2	1:5	Shallow 1.5	to 1.20			Relatively Flat	\checkmark			
Surface features within	a minimum c	of 250 metres (Dis	tances to fea	ntures sh	nould be	noted in metres)				
Houses		There are no houses located within 100m of the proposed percolation area (ppa).								
Existing Land Us	es Ag	Agricultural grazing.								
Vegetation Indicators		Grass is the pre-dominant vegetation in the ppa. The absence of rushes in the ppa could indicate adequate percolation characteristics of the subsoil.								
Groundwater Flow Directions		Northeastern direction.								
Ground Condition		Ground conditions are best described as firm in the ppa and throughout the site.								
Site Boundaries		Hedge and trees with drains located on all boundaries (North, East, West and South)								
Roads		Agricultural laneway located >20m Southwest of the ppa.								
Outcrops (Bedrock and/or subsoil)		None identified or evident in the vicinity.								
Surface water ponding		No evidence of surface water ponding when examined on 21.03.12. It must be noted that weather conditions prior to the site assessment taking place was generally dry.								
Drainage Ditches		Drainage ditches located along all boundaries. Drain levels at approximately 1m below ground level and approximately 1.20m wide.								
Beaches/Shellfish	None ident in the vicin	-	Areas/Wetlands None identified or evident in the vicinity.							
Karst Features	None ident in the vicin	-	Watercourse streams		/ Drainage ditches as above.					
Lakes		-	Springs/ Wells		None identified or evident in the vicinity.					
Beaches/Shellfish Karst Features Lakes	S 11 None ident in the vicin None ident in the vicin None ident in the vicin	1m below ground level and approximately 1.20m wide. dentified or evident Springs/ None identified or evident								

Comments (Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, the suitability of the site to treat the wastewater and the location of the proposed treatment system on the site. Following the desk study surface water was not thought not to be at risk. During the visual assessment the land here seems to be generally average drained in the location of the tested area. From this, the surface water does not seem to be a potential target, unless the soil in the proposed percolation area is saturated. Groundwater is still a target following the visual assessment, unless the minimum depths required are met on the site and there exists adequate percolation. Wells in use in the area are not considered to be at risk, as they are all well outside the minimum separation distances (Groundwater Protection Responses of GSI/EPA/DoELG).

Should be a minimum 3m deep

Should	d be a minimum	Sinueep								
Depth	of Trial Hole			3.00m						
De	Depth from Ground Surface to bedrock (m) if Present		e to	None encountered		Depth from Ground Surface to Water Table (m) if Present			1.00m	
Depth of water ingress			1.00m	F	Rock Type if Present			None encountered		
Date a	Date and Time of Excavation 19.03.		19.03.1	2 08.00	D	ate and Time of Examination	21.03		3.12 09.00	
	Depth of P & T Test	Soil/Subsoil Texture Classification		Plasticity and Dilatancy	Soil Structure	Density Compactness	Co	lour	Preferential Flowpaths	
0.1m 0.2m 0.3m	Depth of P Test	Silt,	/Clay	Ribbons 75mm 3 Threads	Blocky	Medium	Br	own	None	
0.4m 0.5m 0.6m	Depth of T Test	Cl	LAY	Ribbons 115mm 8 Threads	Sticky	High		wn - ange		
0.7m 0.8m 0.9m 1.0m		Grave	els/Clay	Ribbons 10mm 2 Threads	Blocky	Low		rey ange		
1.1m 1.2m 1.3m 1.4m			nter WL	Winter GWL	Winter GWL	Winter GWL		inter WL	Winter GWL	
1.5m 1.6m 1.7m 1.8m										
1.9m 2.0m 2.1m 2.2m	-									
2.3m 2.4m 2.5m										
2.6m 2.7m 2.8m 2.9m										
3.0m Evaluat	-				-	based on BS593 subsoil exhibited				

Winter Water Table Level of 1.00m)

Likely T Value

<20.00 min /25mm *Note: Depth of percolation test holes should be indicated on log above (Enter P & T Depths as appropriate)

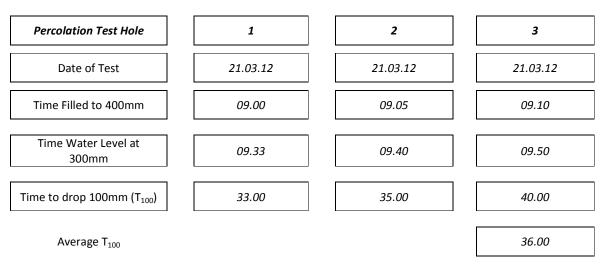
* See Appendix E for BS5930 Classification

****** 3 samples to be tested on each horizon and results should be entered above for each horizon.

*** All signs of mottling should be recorded.

3.3a Percolation ("T" Test for Deep Subsoils and Water Table)

Step 1 Test Hole Preparation


Percolation Test Hole	1	2	3
Depth from ground surface to top of hole (mm) (A):	200	200	200
Depth from ground surface to base of hole (mm) (B):	600	600	600
Depth of hole (mm) (B-A):	400	400	400
Dimensions of hole [length x breadth (mm)]:	300 x 300	300 x 300	300 x 300

Step 2 Pre-Soaking Test Holes

Date and Time Pre- soaking Started	20.03.12	16.40	20.03.12	16.45	20.03.12	16.48

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3 Measuring T₁₀₀

If T_{100} >300mins then T Value >90 – site unsuitable for discharge to ground If $T_{100} \le 210$ mins then go to Step 4 If $T_{100} \ge 210$ mins then go to Step 5

Step 4 Standard Method (where $T_{100} \leq 210$ min)

Percolation Test Hole	1					2		3			
Fill No.	Start Time at 300mm	Finish Time at 200mm	Δt (min)		Start Time at 300mm	Finish Time at 200mm	Δt (min)	Start Time at 300mm		Δt (min)	
1	09.34	10.15	41.00		09.41	10.29	48.00	09.51	10.41	50.00	
2	10.16	11.08	52.00		10.30	11.31	61.00	10.42	11.48	66.00	
3	11.09	12.17	68.00		11.32	12.51	79.00	11.49	13.24	95.00	
Average ∆t			53.67				62.67			70.33	
	Average A		13.42		Average <i>I</i> [Hole No.		15.67	Average [Hole N		17.58	
Result of Test	: T		15.56	n	nin/25mm						
Comments											
		Excell	ent perco	lat	ion charact	eristics of t	he subsoil				

3.3b Percolation ("P" Test for Shallow Subsoils and Water Table)

Step 1 Test Hole Preparation

Percolation Test Hole	1	2	3
Depth from ground surface to top of hole (mm) (A):	0	0	0
Depth from ground surface to base of hole (mm) (B):	400	400	400
Depth of hole (mm) (B-A):	400	400	400
Dimensions of hole [length x breadth (mm)]:	300 x 300	300 x 300	300 x 300

Step 2 Pre-Soaking Test Holes

Date and Time Pre-	20.03.12	16.50]	20.03.12	16.55	20.03.12	16.58
soaking Started	20.03.12	10.50		20.03.12	10.55	20.03.12	10.58

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3 Measuring P₁₀₀

Percolation Test Hole	1	2	3
Date of Test	21.03.12	21.03.12	21.03.12
Time Filled to 400mm	09.15	09.20	09.25
Time Water Level at 300mm	10.39	10.48	10.59
Time to drop 100mm (P ₁₀₀)	84.00	88.00	94.00
Average P ₁₀₀			88.66

If P_{100} >300mins then P Value >90 – site unsuitable for discharge to ground If $P_{100} \le 210$ mins then go to Step 4 If $P_{100} \ge 210$ mins then go to Step 5

Step 4 Standard Method (where $P_{100} \leq$ 210min)

Percolation Test Hole		1			2			3			
Fill No.	Start Time at 300mm	Finish Time at 200mm	∆t (min)	Start Time at 300mm	Finish Time at 200mm	Δt (min)	Start Time at 300mm	Finish Time at 200mm	Δt (min)		
1	10.40	12.14	94.00	10.49	12.26	97.00	11.00	12.42	102.0		
2	12.15	14.03	108.00	12.27	14.17	110.00	12.43	14.39	116.0		
3	14.04	16.10	126.00	14.18	16.27	129.00	14.40	16.54	134.0		
Average ∆t			109.33]		112.00			117.33		
	Average A		27.33	Average <i>L</i> [Hole No.		28.00	Average A		29.33		
Result of Test : I	Р		28.22	min/25mm							

Good percolation characteristics of the topsoil.

4.0 CONCLUSIONS of SITE CHARACTERISATION:

Not suitable for Development					
Suitable for			Discharge Route		
1. Septic tank System (Septic t	Groundwater				
2. Secondary Treatment Syste	m				
a. Septic tank and in polishing unit					
b. Package Wastewa polishing unit	ter Treatment system and	\checkmark			
	5.0 RECOMMEN	IDATION:			
Propose to install The site is not suitable for a conventional septic tank and percolation area. Tra Environmental recommends that an O' Reilly Oakstown package sewage treatment system or similar approved treatment system and a raised soil polishing provide treatment system and a raised soil polishing provides the system of th					
And discharge to	Groundwater				
-					
Trench Invert Level (m)	0.30m Above Ground Level (AGL)			

Site Specific Conditions (if any) e.g. special works, Site Improvement Works, Testing etc.

The tests showed that the site has a "T" value rating of 15.56min/25mm indicating excellent percolation characteristics of the subsoil. A "P" value rating of 28.22min/25mm was attained indicating excellent percolation characteristics of the topsoil. Bedrock level was not encountered in the trial hole; Groundwater was encountered in the trial hole at a depth of 1.00 BGL.

A purpose built soil polishing filter should be constructed to ensure that there is a minimum of 0.90m of suitable percolating material between the base of the lowest part of the soil polishing filter and groundwater level (1.00m) at all times. The distribution pipes used in this system will be smooth walled, have a diameter of 32mm, have 6mm holes drilled in them 300mm apart, and each pipe should be spaced parallel and 600mm apart. The distribution pipes will be bedded on 250mm depth of crushed stone (20 - 30 mm in size). Once the distribution pipes are in place they should be surrounded and covered to a depth of 150mm of crushed stone which should extend the full width of the soil polishing filter. Before the distribution pipes are backfilled with the topsoil the crushed stone should be covered with geotextile or similar permeable or durable materials. This is to prevent the stone being silted up with topsoil.

Traynor Environmental Ltd also recommends that the soil polishing filter construction and the installation of the O' Reilly Oakstown Treatment System is overseen by a suitable qualified and accredited person

6.0 TREATMENT SYSTEM DESIGN DETAILS								
SYSTEM TYPE: Septic Tank System								
Tank Capacity (m ²)	N/A	Percolation	Mound Percolatio	n Area				
		No. of Trenche	No. of Trenches	N/A				
		Length of Trenches	Length of Trenches (n	n) N/A				
		Invert Level (m) N/A	Invert Level (m)	N/A			
SYSTEM TYPE: O' Reilly Oc	akstown Treatment S	ystem						
Filter Systems				Package Treatment	Systems			
Media Type	Area (m²)	Deep of Filter (m)	Invert Level (m)	Туре				
Sand/Soil	N/A	N/A	N/A	O' Reilly Oakstown System	Treatment			
Soil	72 <i>m</i> ²	0.25m	0.30m AGL	Capacity PE	10			
Constructed Wetland	N/A	N/A	N/A	Sizing of Primary Com	partment			
Other	N/A	N/A	N/A	4	m²			
SYSTEM TYPE: O' Reilly Oc	akstown Treatment S	ystem						
Polishing Filter: Surface A	rea (m²)	N/A	Package Treatment	Systems: Capacity (PE)	10			
or Gravity Fed:			Constructed Wetla	n d: Surface Area (m²)	N/A			
No. of Trenches		N/A						
Length of Trenches (m)	[N/A						
Invert Level (m)		N/A						
DISCHARGE ROUTE:								
Groundwater		\checkmark	Hydraulic Loac	ding Rate (I/m ² .d)	210l/d			
Surface Water			Discha	arge Rate	0.0241/s			
TREATMENT STANDARDS	:							
Treatment System Perfor	mance Standards (m	ng/l) BOE	o ss	NH ₃ Total N	Total P			
O'Reilly Oakstown	n Treatment System	<20) <30	<10 5 - 10	12.5			
QUALITY ASSURANCE:								
Installatio	n & Commissioning		On-	going Maintenance				
Recommend to be o	overseen by plant sup	oplier.	Mainta	in and de-sludge annually				

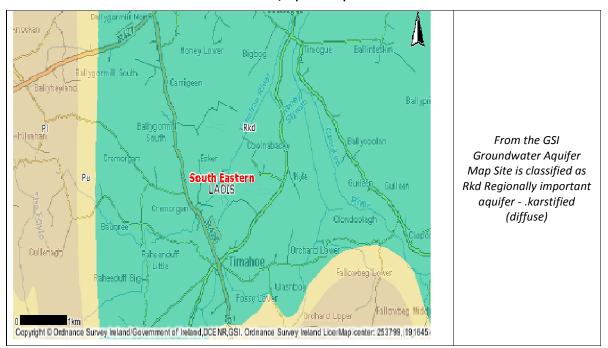
7.0 SITE ASSESSOR DETAILS

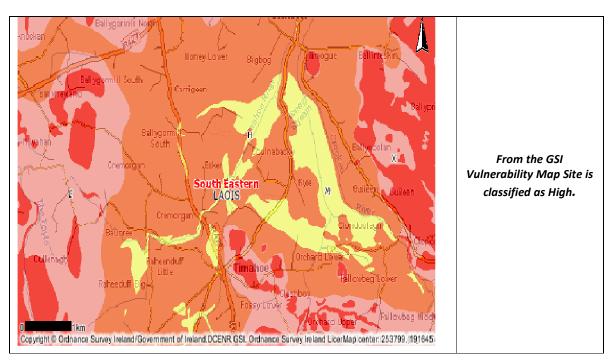
Comp	any:			Traynor Enviro	raynor Environmental Ltd					
Pref	fix:	Mr.	First Name	: Nev	in Surna	me: Traynor				
Addr	ess:	Belturbet Business Park, Creeny, Belturbet, Co. Cavan.								
Qual	ifications/Expe	rience:	BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert.							
Dat	e of Report:		28.03.12							
Phone:	049 9522236	Fax:	049 9522808	orenvironmental.com						
Indemnity Insurance Number:			AGD/11/109							

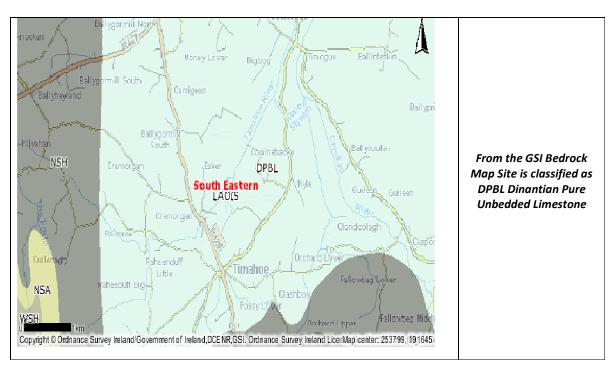
Signed:

No.5 8 1000

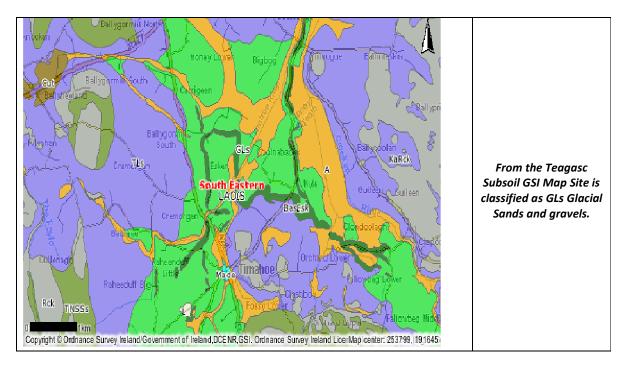
Nevin Traynor BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert. For Traynor Environmental Ltd


8.0 SITE PHOTOGRAPHS




Groundwater/Aquifer Map

Vulnerability Map



Bedrock Map

Teagasc Subsoil Map

10.0 P.I INSURANCE

Griffiths&Armour

ENGINEERS IRELAND VERIFICATION OF PROFESSIONAL INDEMNITY INSURANCE

Insured:	Traynor Environmental Ltd
Address:	Belturbet Business Park Creeny Belturbet Co. Cavan
Description of Business:	Consulting Engineers
Policy Number and Name/Address of Lead Insurer:	A G Doré Syndicate 2526 at Lloyd's 4 th Floor, 70 Gracechurch Street London EC3V 0XL United Kingdom Policy No: AGD/11/109
Period of Insurance:	12 July 2011 to 11 July 2012
Renewal Date:	12 July 2012
Retroactive Date:	None
Limit of Indemnity any one claim:	A sum not less than €1,000,000 (separate aggregate limits of indemnity for all claims in the period relating to
	 pollution or contamination asbestos)
Excess applying to each and every claim:	€5,000
Total amount of Excess amounts payable for all claims during any one period of insurance:	€15,00
Does cover include Joint Venture Projects?	Yes
Does cover include Sub-Consultants?	Yes - Insured's liability
Is there a Sub-Consultant's Warranty?	None
Are there any Restrictions/Limitations/Warranties in relation to the Policy connected with the Project or Brief presented by the Local Authority, Health Board, Vocational Educational Committee, Regional Technical College or other Public Body?	None other than those which are standard to this class of insurance protection
If so, could you provide details:	
\bigcap	$\overline{7}$

C. Zon

Signed:

For and on behalf of Griffiths & Armour Professional Risks GROUP OFFICES Liverpool London Manchester Glasgow Dublin Guernsey

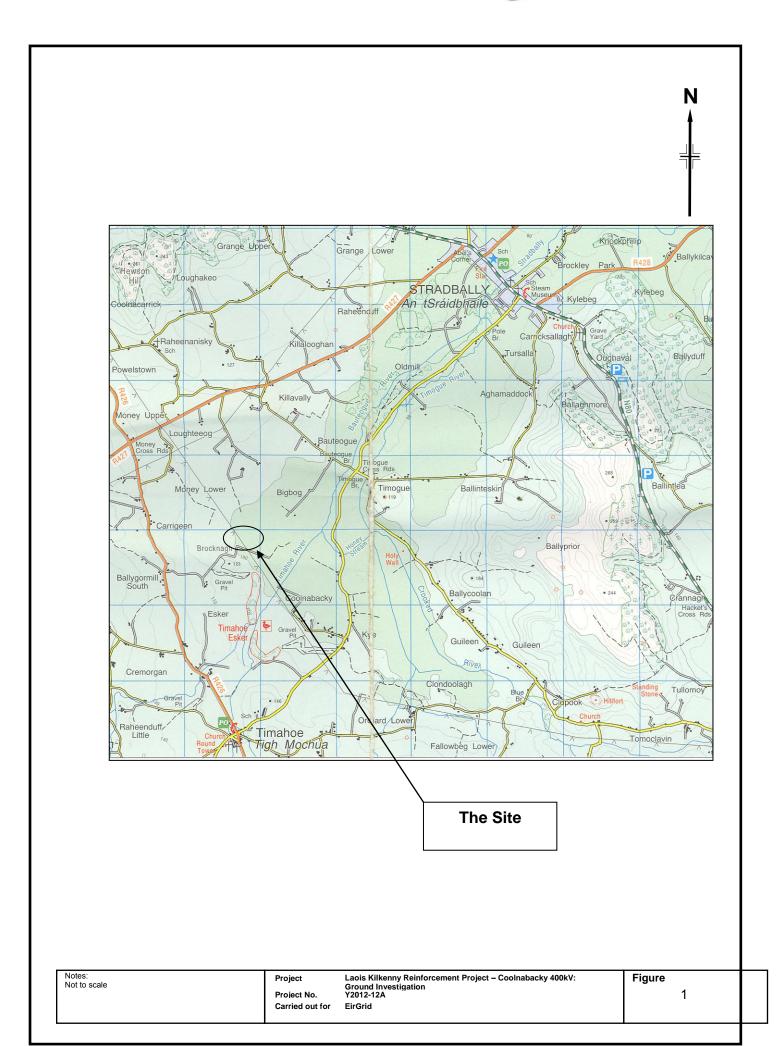
Date:

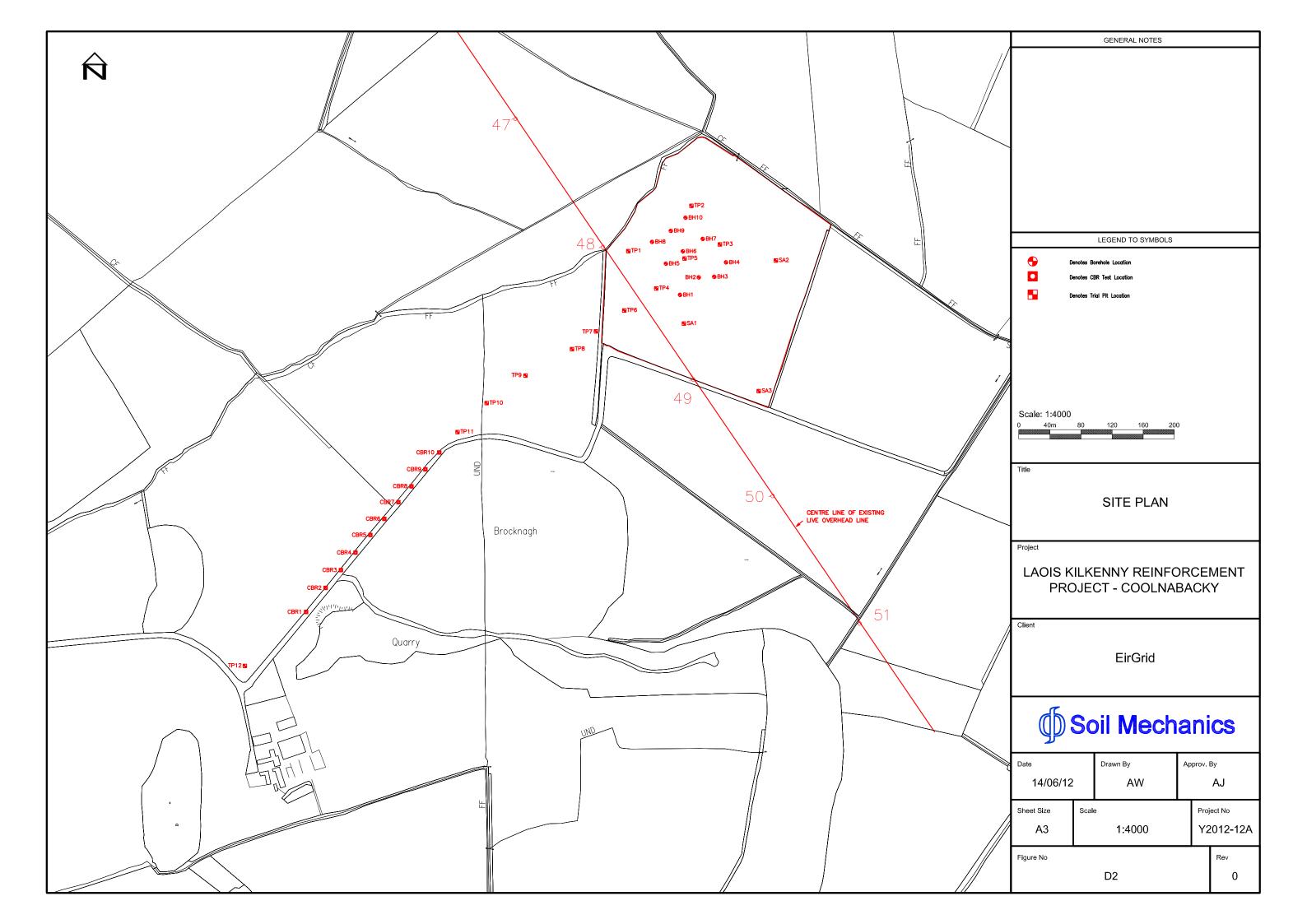
13 July 2011

The policy is subject to the insuring agreements, exclusions, conditions and declarations contained therein. The above is accurate at the date of signature. No obligation is imposed herein on the signatory to advise of any alteration.

Disclosure - Verification of PII for Engineers - Ireland - AG Doré - March 2011 - apo't

Page 1 of 1




ENCLOSURE G DRAWINGS

Site Location Plan Site Plan G1 G2

Site Location Plan

Report No Y2012-12B

LAOIS KILKENNY REINFORCEMENT PROJECT – BALLYRAGGET 110KV SUBSTATION

FACTUAL REPORT ON GROUND INVESTIGATION

Carried out for: EirGrid

Engineer: ESB International

July 2012

Soil Mechanics Geotech Specialists Ltd Carewswood Castlemartyr County Cork Tel: +353 (0) 21 466 7164 Fax: +353 (0) 21 466 7630 email: cork@geotech.ie

Soil Mechanics part of Environmental Scientifics Group

LAOIS KILKENNY REINFORCEMENT PROJECT – BALLYRAGGET 110KV SUBSTATION:

FACTUAL REPORT ON GROUND INVESTIGATION

Report No: Y2012-12B Date: July 2012

Employer:

Dublin 4

EirGrid The Oval 160 Shelbourne Road Ballsbridge Engineer:

ESB International Stephen Court 18/21 St Stephen's Green Dublin 2

Issue No	Date	Details
1	July 2012	Report as submitted

The title to this report is vested in the Employer named but title to copyright is retained. The Contracts (Rights of Third Parties) Act 1999 does not apply to the contract with the Employer and the provisions of the said Act are hereby excluded.

CONTENTS

			Page
1	INTRO	DUCTION	2
2		SITE AND GEOLOGY The Site Published Geology	2
3	3.1 3.2 3.3	DWORK General Exploratory Holes Instrumentation and Monitoring In Situ Testing	3
4		DRATORY TESTING Geotechnical Testing Geoenvironmental Testing	4
	REFE	RENCES	*
	TABL	ES	
	1	Exploratory Holes Levels and Coordinates	
	ENCL A	OSURES EXPLORATORY HOLE RECORDS	

- B INSTRUMENTATION AND MONITORING
- C IN SITU TESTING
- D GEOTECHNICAL LABORATORY TEST RESULTS
- E GEOENVIRONMENTAL LABORATORY TEST RESULTS
- F PHOTOGRAPHS
- G SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT
- H DRAWINGS

1 INTRODUCTION

In February 2012 Soil Mechanics (SM) was commissioned by ESB International (ESBI), on behalf of EirGrid, to carry out a ground investigation at Ballyragget, County Kilkenny. The investigation was required to obtain geotechnical and geoenvironmental information for a proposed replace to an existing 38kv substation.

The scope of the investigation, which was specified by ESBI, comprised cable percussion boreholes, trial pits, in situ testing and laboratory testing. The investigation was carried out in accordance with the contract specification, Eurocode 7 and relevant related standards identified below (see also References). The fieldwork was carried out between 21 March 2012 and 27 March 2012.

This report presents the factual records of the fieldwork and laboratory testing.

A soil characterisation and Soil Suitability Assessment Report was carried out by Traynor Environmental Ltd (Ref 12.050 TE, dated 30 March 2012) and is presented in Enclosure F.

2 THE SITE AND GEOLOGY

2.1 The Site

Ballyragget 38kV Substation is situated approximately 1.25 km north of Ballyragget, County Kilkenny, see Site Location Plan in Enclosure H. The site is at National Grid reference S 445 727.

The site consists of a large roughly rectangular field where the proposed substation is planned to be constructed and an adjacent field through which the proposed access route is planned. The area is level and is presently being used as agricultural land. The existing 38kv Substation bounds the site to the East with the northern boundary being located adjacent to an existing graveyard. To the west and south of the proposed station is currently agricultural land.

2.2 Published Geology

The published geological map covering the site, GSI Sheet 18, shows the bedrock in the area to be the Ballyadams Formation comprising crinoidal wackestone and packstone limestone.

3 FIELDWORK

3.1 General

The fieldwork was carried out in general accordance with BS 5930+A2 (2010), BS EN 1997-2 (2007) and BS EN ISO 22475-1 (2006).

The exploratory hole and in situ test locations were selected by ESBI. The locations were set out by SM approximately to the supplied co-ordinates. The co-ordinates and reduced levels were subsequently resurveyed by SM to Irish National Grid and Ordnance Datum. Table 1 presents a summary of the levels and coordinates of the exploratory positions both to ITM and Irish National Grid. ITM coordinates are presented on the exploratory hole and insitu test locations only.

The exploratory hole and in situ test locations are shown on the Site Plan in Enclosure H.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

ТҮРЕ	QUANTITY	MAXIMUM DEPTH (m)	REMARKS
Cable Percussion Boring	5	9.74	Designated 1 to 5
Trial Pits	13	3.00	Machine dug. Designated SA1 to SA3 and TP1 to 10

SUMMARY OF EXPLORATORY HOLES

The exploratory hole records are presented in Enclosure A and should be read in conjunction with the Key which is included in that enclosure. The records provide descriptions of the materials encountered in accordance with BS 5930 (1999) without amendment. BS EN ISO 14688-1 (2002) and 14689-1 (2003), for soils and rocks respectively, as amplified by BS 5930+A2 (2010). The records also give details of the samples taken together with observations made during boring and pitting. Photographs of the trial pits are presented in Enclosure F.

On completion of the fieldwork the samples were placed in sealed containers and transported to the Cork office of Soil Mechanics for temporary retention in secure frostproof premises. Samples required for geotechnical testing were subsequently transferred to the in-house laboratory on

receipt of the Client's testing instructions. Geoenvironmental samples were transported from site directly to the ESG Scientifics laboratory.

3.3 Instrumentation and Monitoring (Observations not included in this draft report)

The instruments installed in the exploratory holes are shown on the logs and detailed in Enclosure B. No groundwater monitoring has been carried out.

3.4 In Situ Testing

In situ testing was carried out in accordance with the relevant standards as tabulated below. The testing is summarised in the following table and the results are presented in Enclosure C unless noted otherwise. A calibration certificates of the SPT hammer is included with the results of the SPTs in Enclosure A.

SUMMARY OF IN SITU TESTING

TYPE	QUANTITY	REMARKS
Standard Penetration Test	38	BS EN ISO 22476-3 (2005). Results presented on logs in Enclosure A
Dynamic Cone Penetration	44	Completed by Dynamic Cone Penetration Test BS 1377 (1990) with
Test (DCP's)	11	calculated CBR values
EPA Percolation Test		Completed by Traynor Environmental presented in Enclosure F
Soakaway	3	BRE Digest 365 (2007)

4 LABORATORY TESTING

4.1 Geotechnical Testing

The testing was scheduled by ESBI and was carried out in accordance with BS 1377 (1990). The testing is summarised below and the results are presented in Enclosure D.

SUMMARY OF GEOTECHNICAL LABORATORY TESTING

ТҮРЕ	REMARKS
Moisture Content Determination	2 no
Atterberg Limit Determination	2 no
Particle Size Distribution Analysis	18 no
	7 no. Test methods are BS 1377 or others recognised in BRE
pH and Water Soluble Sulphate Content of Soils	Special Digest 1 (2005); they are indicated on the results report
	sheets in Enclosure < <d>>.</d>

4.2 Geoenvironmental Testing

The testing was scheduled by ESBI and was carried out by ESG Scientifics. The results are presented in Enclosure E.

Prepared By	Alex Orrell BSc
Reviewed By	M N Harris BSc MSc DIC MICE CEng FGS
Approved for Issue By	

REFERENCES

BRE Digest 365 : 2007 : Soakaway design. Building Research Establishment, Garston, Watford.

- BS 1377 : 1990 : Methods of test for soils for civil engineering purposes. British Standards Institution.
- BS 5930 : 1999 : Code of practice for site investigations. British Standards Institution.
- BS 5930+A2 : 2010 : Code of practice for site investigations (Amendment 2). British Standards Institution.
- BS EN 1997-2 : 2007 : Eurocode 7 Geotechnical design Part 2 Ground investigation and testing. British Standards Institution.
- BS EN ISO 14688-1 : 2002 : Geotechnical investigation and testing Identification and classification of soil Part 1 Identification and description. British Standards Institution.
- BS EN ISO 22475-1 : 2006 : Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution. British Standards Institution.
- BS EN ISO 22476-3 : 2005 : Geotechnical investigation and testing Field testing Part 3 Standard penetration test. British Standards Institution.
- GSI Geology of Tipperary Sheet 18 : 1994. 1:100 000 geological map (solid). Geological Survey of Ireland
- OSI Discovery Series Sheet 60 Kilkenny Laois Tipperary: 1996 First Edition. 1:50 000 Ordnance Survey of Ireland.

TABLE 1 : EXPLORATORY HOLES LEVELS AND COORDINATES

		I.T.M.		Irish National Grid		
Point ID	Easting(m)	Northing(m)	Level (mOD)	Easting(m)	Northing(m)	Level (mOD)
BH-01	644345.81	672189.97	69.34	244404.96	172149.85	69.34
BH-02	644350.34	672169.87	69.24	244409.50	172129.76	69.24
BH-02 BH-03	644320.22	672187.02	68.54	244379.37	172146.91	68.54
BH-04	644332.23	672166.57	68.88	244391.39	172126.46	68.88
BH-05	644312.72	672173.68	68.19	244371.87	172133.56	68.19
SA-01	644354.18	672181.08	69.47	244413.34	172140.96	69.47
SA-02	644288.49	672141.09	69.02	244347.64	172100.97	69.02
SA-03	644300.85	672212.60	68.55	244359.99	172172.49	68.55
TP-01	644376.32	672228.07	69.81	244435.49	172187.97	69.81
TP-02	644334.54	672201.57	69.29	244393.69	172161.46	69.29
TP-03	644299.35	672190.02	68.12	244358.49	172149.91	68.12
TP-04	644333.05	672183.75	69.04	244392.21	172143.64	69.04
TP-05	644345.48	672169.75	69.18	244404.63	172129.64	69.18
TP-06	644335.73	672155.02	68.41	244394.89	172114.90	68.41
TP-07	644310.51	672152.14	68.62	244369.66	172112.02	68.62
TP-08	644280.49	672153.85	69.14	244339.63	172113.73	69.14
TP-09	644272.98	672179.59	69.25	244332.12	172139.47	69.25
TP-10	644264.64	672205.33	69.05	244323.78	172165.22	69.05
DCP-01	644392.07	672233.54	70.01	244451.24	172193.44	70.01
DCP-02	644365.68	672224.27	69.65	244424.84	172184.16	69.65
DCP-03	644338.38	672212.86	69.41	244397.54	172172.76	69.41
DCP-04	644330.97	672199.11	69.17	244390.12	172159.00	69.17
DCP-05	644297.84	672191.80	68.13	244356.99	172151.69	68.13
DCP-06	644302.98	672174.91	68.29	244362.12	172134.80	68.29
DCP-07	644335.64	672181.92	69.09	244394.79	172141.81	69.09
DCP-08	644339.81	672163.15	68.76	244398.97	172123.04	68.76
DCP-09	644310.32	672185.98	68.13	244369.47	172145.87	68.13
DCP-10	644315.70	672165.84	68.32	244374.85	172125.73	68.32
DCP-11	644307.55	672158.95	68.49	244366.70	172118.83	68.49

ENCLOSURE A EXPLORATORY HOLE RECORDS

Key to Exploratory Hole Records Hammer Energy Report

Borehole Logs Trial Pit Logs Key Calibration certificate DP1 BH1 to 5 SA1 to SA3 and TP1 to 10

Key to Exploratory Hole Records

SAMPLES

SAMPLES			
Undisturbed		_	
U UT TW	Driven tube sam Driven thin wall t Pushed thin wall	ube sample 👃 nominally 100 mm diameter and full recovery unless othe	rwise stated
P L CBR	Pushed piston s Liner sample (fro CBR mould sam	m Windowless or similar sampler), full recovery unless otherwise stated	
BLK CS	Block sample Core sample (fro	om rotary core) taken for laboratory testing	
AMAL	Amalgamated sa	ample	
Disturbed D	Small sample		
В	Bulk sample		
Other			
W G	Water sample Gas sample		
ES EW		hemistry samples (in more than one container where appropriate)	
Comments		e numbers are assigned to every sample taken. A sample reference of 'NR' ube sample, however, there was no recovery.	indicates that attempt was
	Monitoring samp	les taken after completion of hole construction are not shown on the explora	tory hole logs.
TESTS			
SPT S or SPT C	Standard Penetr	ation Test, open shoe (S) or solid cone (C)	
	Field Records co (SW) is noted. V	enetration Test is defined in BS EN ISO 22476-3 (2005). The incremental bloumn; each increment is 75 mm unless stated otherwise and any penetratio Where the full 300 mm test drive is achieved the total number of blows for the t column. Where the test drive blows reach 50 the total blow count beyond t prefix).	n under self weight in mm e test drive is presented as
IV HV PP KFH, KRH, KPI	Hand vane shea Pocket penetron Permeability tes	ar strength, peak (p) and remoulded (r) r strength, peak (p) and remoulded (r) neter test, converted to shear strength ts (KFH = falling head, KRH = rising head; KPI = packer inflow); results prov ue per stage for packer tests)	ided in Field Records
DRILLING RECOR	DS		
The mechanical inc	lices (TCR/SCR/RC	QD & If) are defined in BS 5930+A2 (2010)	
TCR	Total Core Reco	very, %	
SCR RQD	Solid Core Reco Rock Quality De		
lf	Fracture spacing	g, mm. Minimum, typical and maximum spacings are presented. The term s used where the core is fragmented.	
Flush returns, estim	nated percentage w	ith colour where relevant, are given in the Records column	
CRF	Core recovered	(length in m) in the following run	
AZCL NR	Assessed zone Not recovered		
GROUNDWATER			
▼	Groundwater str	ike	
\bigtriangledown		el after standing period	
Notes:	on of standards	Project LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET	
See report text for full referenc	es di standards	Project No. Y2012-12B	Key
		Carried out for EirGrid	Sheet 1 of 2

Key to Exploratory Hole Records

INSTALLATION

INSTALLATION							
Standpipe/ piezometer	Details of standpipe/piezometer installations are given on the Record. Legend column shows installed instrument depths including slotted pipe section or tip depth, response zone filter material type and layers of backfill.						
SP SPIE PPIE EPIE	The type of instrument installed is indicated by a code in the Legend column at the depth of the response zone: Standpipe Standpipe piezometer Pneumatic piezometer Electronic piezometer						
Inclinometer or Slip Indicator	The installation of column.	of vertical profilin	ig instruments is	indicated on the F	Record. The base o	of tubing is shown	n in the Legend
ICE CAR ICM SLIP CAR	The type of instru Biaxial inclinome Inclinometer tubi Slip indicator	eter	,	code in the Legen	d column at the ba	se of the tubing:	
Settlement Points or Pressure Cells	The installation of the Legend colure		struments is indi	cated on the Reco	rd. The location of	the measuring d	evice is shown in
ESET ETM EPCE PPCE	The type of instri Electronic settler Magnetic extens Electronic ember Electronic push i	ment cell/gauge ometer settleme dment pressure	nt point	code in the Legen	d column:		
INSTALLATION LEGENDS	A legend describ describe the bac				n. Legends additio	nal to BS5930 a	re used to
	Arisings		Grout	Bentonite	Sand	Gravel	Macadam
NOTES 1	Soils and rocks a amplified by BS			BS EN ISO 1468	8-1 (2002) and 146	689-1 (2003) res _l	pectively as
2	For fine soils consistency determined in the field by the logger is reported for those strata where undisturbed samples are available. The consistency is qualified and given (in brackets) when, in the opinion of the logger, the sample is disturbed but the assessed consistency is reasonably representative of the in situ conditions; in these circumstances it will normally underestimate consistency in situ. No consistency is given where the samples available are too disturbed to allow a reasonable assessment.						
3		lation to the exp			oulders) is presente ot be fully represen		
4	The declination of will be the dip.	of bedding and jo	oints is given witl	h respect to the no	ormal to the core ax	kis. Thus in a ver	tical borehole this
5	The assessment of SCR, RQD and Fracture Spacing excludes artificial fractures						
6	Strata legends a	re in accordance	e with BS 5930+	A2 (2010).			
Water level observations of discernible entries during the advancing of the exploratory hole are given at the foot of the log and in the Legend column. The term "none observed" is used where no discrete entries are identified although this does not necessarily indicate that the hole has not been advanced below groundwater level. Under certain conditions groundwater cannot be observed, for instance, drilling with water flush or overwater, or boring at a rate much faster than water can make its way into the borehole (ref BS5930+A2:2010, Clause 47.2.7). In addition, where appropriate, water levels in the hole at the time of recovering individual samples or carrying out in situ tests and at shift changes are given in the Records column.							
8 The borehole logs present the results of Standard Penetration Tests recorded in the field without correction or interpretation. However, in certain ground conditions (eg high hydraulic head or where very coarse particles are present) some judgement may be necessary in considering whether the results are representative of in situ mass conditions.							
Notes: See report text for full references	s of standards	Project	LAOIS KILKENNY F	REINFORCEMENT PRO	JECT - BALLYRAGGET	r	
		Project No. Carried out for	Y2012-12B EirGrid				Key
							Sheet 2 of 2

01896 752295

Diameter d_r (mm):

Accelerometer No.1:

Accelerometer No.2:

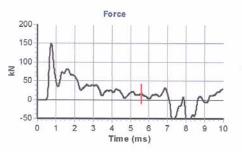
Instrumented Rod Data

Wall Thickness t_r (mm):

Assumed Modulus Ea (GPa): 208

SPT Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

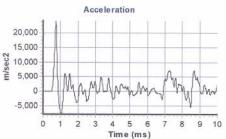

SPT Hammer Ref:	DP1
Test Date:	20/12/2011
Report Date:	20/12/2011
File Name:	DP1.spt
Test Operator:	SMCD

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 15.8

Comments / Location

Tested in Holequest Ltd Test Facility




54

6.0

6092

6094

Velocity

Calculations

Energy Ratio E _r (%	6):	74
Measured Energy E _{meas}	(J):	352
uicoi	(J):	473
Area of Rod A (mm2):		905

0 Signed: Stewart McDowall

Title: Engineer

The recommended calibration interval is 6 months

SPTMAN ver.1.92 All rights reserved, Testconsult ©2010

Drilled DA Logged MMS Checked MNH	Start 26/03/2012 End 27/03/2012	Cable percussion boring		,	Depth from to Diameter Casing Depth 0.00m 9.74m 150mm 9.40m	Ground Level Coordinates National Grid Chainage	+69.34 m E 644345 N 672189	5.81
Samples an	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Bac	
0.00-0.30 0.20 0.30 0.30-0.60 0.60 0.60-1.10	B 1 D 2 D 3 B 4 D 5 B 6	0.00-9.50 m Hand excavated inspection pit			Brown sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of various lithologies with some rootlets. (TOPSOIL)	(0.60) 0.60 +68.74		
1.20-1.65 1.20-1.70	SPT C B 7	+ N=47 (2,8/11,11,12,13)	1.20	dry	Brown very clayey SAND and GRAVEL. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of various lithologies. Dense dark grey slightly silty very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subrounded fine to	(0.60) 1.20 +68.14		
- 2.00 2.20-2.65 2.20-2.70	D 8 SPT C B 9	N=43 (4,8/10,10,12,11)	2.20	1.10	coarse of limestone.	(2.10)	× • • × • • • • • • • • • • • • • • • •	
- 3.00 - 3.30-3.75	D 10 SPT C	N=21 (4,6/6,5,5,5)	26/03/2012 3.30 	2.70		3.30 +66. <i>04</i>		
- 3.30-3.75 - 3.30-3.80 	B 11			2.20	Medium dense to dense dark grey slightly silty very gravelly SAND with rare subrounded cobbles of sandstone. Sand is fine to coarse. Gravel is subangular to subrounded of various lithologies.		× × 0 • × • • 0 • × • • 0 • × • • 0 • • • • • • • • • • 0 • • • • • • • 0 • • • • • • • 0 • • • • • • • • 0 • • • • • • • • • 0 • • • • • • • • • 0 • • • • • • • • • • • 0 • • • • • • • • • • • • 0 • • • • • • • • • • • • 0 • • • • • • • • • • • • • • • • 0 • • • • • • • • • • • • • • • • • • •	
4.30-4.75 4.30-4.80	SPT C B 13	N=26 (3,5/5,6,7,8)	4.30	2.10			× 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
- 5.00 5.30-5.75 5.30-5.80	D 14 SPT C B 15	N=27 (4,3/5,6,7,9)	5.30				× × 0 • • • • 0 • × • 0 • • × 0 • • • • 0	
- 6.00	D 16					(5.50)	× • • • • • • • • • • • • • • • • • • •	
6.80-7.25 6.80-7.25 - 7.00	SPT C B 17 D 18	N=37 (4,6/8,10,9,10)	6.80	3.10			• * 4 • 0 • * • • • • 0 • * • • • • • 0 • * • • * • • 0 • * • • • • • 0 • * • • • • • 0 • • • • • • • 0 • • • • • •	
- 8.00	D 19						・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
8.30-8.73 8.30-8.60	SPT C B 20	50 (5,8/10,10,14,16 for 50mm)	8.30	3.60			× × 0 × × × 0 × • × 0	
8.80 - 9.40-9.68	D 21 SPT S	50 (7,15/24,26 for 55mm)	9.40	4.10	Stiff to very stiff greyish brown sandy gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse of limestone.	8.80 +60.54 (0.94)		
9.40 9.60-9.74	D 22 SPT C	50 (25 for 70mm/50 for 65mm)	27/03/2012 9.40		EXPLORATORY HOLE ENDS AT 9.74 m	9.74 +59.60		SF
Depth	Type & No	Records	Date Casing	Time Water	Paul Pales (Paul 4	a		
Groundwater Entrie No. Struck Pos (m) None observed (se	st strike beha		Depth se	aled (m)	Depth Related Remarks * From to (m) 1.20 9.60 Water added.	1.80 -1.80 3 2.60 -2.80 3	Time Tools used 00 mins 00 mins 00 mins	ł
otes: For explanations see key evels in metres. Stra depth column.	y sheet. All de atum thickness	epths and reduced	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET Y2012-12B EirGrid	Borehole	BH1	

Scale 1:50

DrilledDALoggedMMSCheckedMNH	Start 26/03/2012 End 26/03/2012	Cable percussion boring.	and Remark	s	Depth from to Diameter Casing Depth 0.00m 8.70m 150mm 8.70m	Ground Level Coordinates National Grid Chainage	+69.24 m E 644350 N 672169	0.34
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)		ckfill/ Iments
- 0.00-0.30 - 0.10 - 0.30 - 0.30-0.60 - 0.60 - 0.60-1.10	B 1 D 2 D 3 B 4 D 5 B 6	0.00-1.20 m	ousing	Water	Firm brown sandy slightly gravelly CLAY with rootlets. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium of various lithologies. (TOPSOIL)	(0.60) 0.60 +68.64		
 1.20-1.65 1.20-1.70 	SPT C B 7	• N=33 (2,4/6,8,9,10)	1.20	dry	Brown clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse of various lithologies. Medium dense to dense mottled grey brown slightly silty very gravelly SAND. Sand	(0.60) 1.20 +68. <i>04</i>		
2.00 2.20-2.65 2.20-2.70	D 8 SPT C B 9	N=27 (4,4/6,8,6,7)	2.20	1.20	is fine to coarse. Gravel is subangular to rounded fine to coarse of various lithologies.	(2.00)	× • × • • • × • • • × • • • • • • • • •	/////
- 3.00 - 3.20-3.65 - 3.20-3.70	D 10 SPT C B 11	N=36 (2,5/7,9,10,10)	3.20	2.10	Medium dense to dense grey and brown sandy GRAVEL. Sand is fine to coarse. Gravel is subangular to sounded fine to coarse of various lithologies.	3.20 +66.04		
- 4.00 - 4.30-4.75 - 4.30-4.80	D 12 SPT C B 13	N=21 (3,5/6,5,5,5)	4.20	2.20				
- - - 5.00	D 14					(2.80)		
- 5.30-5.75 - 5.30-5.80 -	SPT C B 15	N=28 (3,5/8,7,6,7)	5.30	3.20				
- 6.00 	D 16 SPT C B 17	N=39 (4,6/8,10,11,10)	6.80	3.20	Dense to very dense grey to dark grey and brown silty SAND and GRAVEL. Sand is fine to coarse. Gravel is subangular to rounded fine to coarse of various lithologies.	6.00 +63.24		
7.00	D 18					(2.70)		
8.00 8.30 8.30-8.70 8.70	D 19 SPT C B 20	0	8.30 26/03/2012 8.70 8.70	2		8.70 +60.54		
		0	0.10		EXPLORATORY HOLE ENDS AT 8.70 m			
-			Date	Time				
Depth Groundwater Entri No. Struck Po (m) None observed (s	ost strike beha		Casing Depth se	Water	Depth Related Remarks * From to (m) 1.20 8.70 Water added		Time Tools used 0 mins	I
Notes: For explanat abbreviations see ke levels in metres. Str in depth column. Scale 1:50	ey sheet. All de atum thickness (c)	and pths and reduced given in brackets ESG www.esg.co.uk 64412077012 16:52:05	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET Y2012-12B EirGrid		BH2 eet 1 of 1	

(c) ESG www.esg.co.uk 426.4812/07/2012 16:52:05

Soil Mechanics

Drilled DA Logged AO Checked MNH	Start 22/03/2012 End 22/03/2012	Equipment, Methods Dando 2000 Cable percussion boring	and Remark	s	Depth from to Diameter Casing Depth 0.00m 9.02m 150mm 8.80m	Ground Level Coordinates National Grid Chainage	E	3.54 mOE 644320.22 672187.02
Samples a	nd Tests	i			Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend	Backf Instrum
0.00-0.30 0.10	B 1 D 2	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL	(0.30)		
0.30 0.30-0.80	D 3 B 4				Brown clayey slightly gravelly SAND.	0.30 +68.24	· ·	\mathbb{N}
					Sand is fine to coarse. Gravel is subrounded fine to coarse predominantly	(0.50)	°	\mathbb{N}
0.80	D 5 B 6				of limestone.	0.80 +67.74		$\left \right\rangle$
-					Dense locally medium dense grey brown sandy to very sandy GRAVEL locally		F . I	\mathbb{N}
1.20-1.65 1.20-1.70	SPT C B 7	* N=15 (1,2/3,3,4,5)	1.20	dry	clayey with low cobble content. Gravel	-	ے۔ ہ	\mathbb{N}
					is subrounded to subangular of limestone. Sand is fine to coarse.		· · · · · ·	\mathbb{N}
					:			
- 2.00	D 8				-	-		$\left \right\rangle$
2.20-2.65 2.20-2.70	SPT C B 9	N=34 (4,6/6,7,9,12)	2.20	1.10			- · · ·	$\left \right\rangle$
2.20-2.70	59				-	-		\mathbb{N}
						-	• • •	\mathbb{N}
- 3.00	D 10							\mathbb{N}
3.20-3.65	SPT C	N=46 (6,8/9,11,12,14)	3.20	1.30				\mathbb{N}
3.20-3.70	B 11	,			-		°	\mathbb{N}
								$\left \right\rangle$
						-	1 P	\mathbb{N}
- 4.00	D 12				4.00-4.70 m recovered as	-		$\left \right\rangle$
4.20-4.65 4.20-4.70	SPT C B 13	N=12 (2,5/4,2,3,3)	4.20	1.10	grey brown sandy GRAVEL	-	• • • •	\mathbb{N}
					with high cobble	-	р., 	
					L.	(8.00)		\mathbb{N}
- 5.00	D 14				-			$\left \right\rangle$
5.20-5.65 5.20-5.70	SPT C B 15	N=31 (10,12/12,8,7,4)	5.20	1.50				$\left \right\rangle$
3.20-3.70	010				-	-		\mathbb{N}
					-	-		\mathbb{N}
- 6.00	D 16							\mathbb{N}
0.00					-	-	Q	$\left \right\rangle$
						-		\mathbb{N}
							۰ م م	\mathbb{N}
6.80-7.25 6.80-7.30	SPT C B 17	N=25 (4,4/4,6,8,7)	6.80	0.90	-	-	<i>ه</i>	\mathbb{N}
7.00	D 18				-	-	°.	
							ہ ہ	$\left \right\rangle$
					-	-	· ~	\mathbb{N}
								\mathbb{N}
- 8.00	D 19					1		$ \rangle$
8.30-8.52	SPT C	50 (15,10 for 25mm/	8.30	0.00		1		$ \rangle$
8.30-8.80	B 20	27,23 for 40mm)					0 0	\mathbb{N}
8.80-9.02	SPT C	50 (12,13 for 30mm/	8.80			8.80 +59.74	P. 1	\mathbb{N}
	ļ	29,21 for 40mm)	22/03/2012	2	EXPLORATORY HOLE ENDS AT 9.02 m	100.74		\square
						-		
						-		
				-				
Depth	Type & No	Records	Date Casing	Time Water				
Groundwater Entri No. Struck Po	ies ost strike beha	viour	Depth s	ealed	Depth Related Remarks * From to (m)	Chiselling Depths (m) T	Time Tool	s used
(m) None observed (s				(m)	1.20 8.80 Water added	7.60 -7.60 3	80 mins 60 mins	
otes: For explanat	tion of symbols	and pths and reduced	Project		LAOIS KILKENNY REINFORCEMENT PROJECT -	Borehole		
evels in metres. Str o depth column.	ratum thickness	given in brackets	Project N	о.	BALLYRAGGET Y2012-12B		BH3	
cale 1:50	(c)	ESG www.esg.co.uk	Carried o	ut for	EirGrid	Sh	eet 1 of 1	

Drilled DA Logged AO Checked MNH	Start 23/03/2012 End 26/03/2012	Equipment, Methods ar Dando 2000 Cable percussion boring	nd Remarks			Depth from to Diameter Casing Depth 0.00m 7.90m 150mm 7.90m		Ground Level Coordinates National Grid Chainage	Εθ	8.88 mOD 644332.23 672166.57
Samples an	d Tests		-	_	Strata					
Depth	Type & No	Records	Date Casing	Time Water		Description		Depth, Level (Thickness)	Legend	Backfill/ Instruments
0.00-0.30 0.10 0.30 0.30-0.50 0.50 0.50-1.00 	B 1 D 2 D 3 B 4 D 5 B 6	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL Brown slightly clayey slig SAND with low cobble co of various lithologies. Sa coarse. Gravel is subrou	ontent subrounded nd is fine to	0.50-1.00 m brown gravelly SAND with high cobble content	(0.30) 0.30 +68.58 0.50 +68.38	° 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	SPT C B 7	• N=38 (4,7/8,9,10,11)	1.20	dry	coarse of limestone. Dense locally medium di sandy slightly clayey GR cobble content subangul predominantly of limesto fine to coarse subrounde subangular Sand is fine	AVEL with high ar to rounded ne. Gravel is ed. to	U 		· · · · · · · · · · · · · · · · · · ·	
2.00 2.20-2.65 2.20-2.70	D 8 SPT C B 9	N=38 (5,7/7,9,10,12)	2.20	1.10						
- 3.00 - 3.20-3.65 - 3.20-3.70 	D 10 SPT C B 11	N=42 (4,6/8,10,12,12)	3.20	1.90						
- - - - - - 4.20-4.65 - - 4.20-4.70 -	D 12 SPT C B 13	N=30 (4,4/6,8,8,8)	4.20	1.20				(7.40)		
5.00 5.20-5.65 5.20-5.70	D 14 SPT C B 15	N=27 (4,20/5,8,7,7)	5.20	1.80			5.20-7.00 m recovered as grey slightly sandy gravelly COBBLES			
- 6.00 - 6.00 	D 16 SPT C	N=35 (4,6/8,8,10,9)	6.50	2.10						
6.50-7.00 6.95-7.31 7.00	B 17	50 (10,12/16,18,16 for 60mm)	26/03/2012 7.90 23/03/2012							
7.50	D 19		26/03/2012 7.90	5.10	EXPLORATORY HOLE	ENDS AT 7.90 m		7.90 +60.98		
_			Defe	Tire			-			
Depth Groundwater Entrie No. Struck Pos (m) None observed (se	st strike behav	Records		Time Water aled (m)	Depth Related Remarks * From to (m) 1.20 7.90 Water added		_	2.80 - 2.80 30	i me Too l 0 mins 0 mins	is used
Notes: For explanatio abbreviations see key levels in metres. Stra in depth column. Scale 1:50	/ sheet. All dep tum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 66.481207/2012 16.52.08	Project Project No Carried ou		LAOIS KILKENNY REINFORCE BALLYRAGGET Y2012-12B Eirgrid	MENT PROJECT -			BH4 eet 1 of 1	

Soil Mechanics

Drilled DA Logged AO Checked MNH	Start 23/03/2012 End 23/03/2012	Equipment, Methods an Dando2000 Cable percussion boring	nd Remarks	5	Depth from to Diameter Casing Depth 0.00m 8.10m 150mm 6.70m	Ground Level Coordinates National Grid Chainage	+68.19 mOD E 644312.72 N 672173.68
Samples an	d Tests		-		Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Backfill/ Instruments
0.00-0.30 0.10 0.30 0.30-0.70 0.70 0.70-1.20	B 1 D 2 D 3 B 4 D 5 B 6	0.00-1.20 m Hand excavated inspection pit.			TOPSOIL Brown very sandy slightly gravelly CLAY with low cobble content of subrounded limestone. Sand is fine to coarse. Gravel is subrounded fine to coarse of limestone.	(0.30) 0.30 +67.89 (0.40) 0.70 +67.49	
1.20-1.65 1.20-1.70	SPT C B 7	• N=11 (1,1/2,3,2,4)	1.20	dry	Innestone. J Medium dense becoming very dense grey		
2.00 2.20-2.65 2.20-2.70	D 8 SPT C B 9	N=16 (2,4/4,5,4,3)	2.20	1.10	limestone.		
3.00 3.20-3.65 3.20-3.70	D 10 SPT C B 11	N=12 (2,3/4,3,2,3)	3.10	1.70		(6.00)	
4.00 4.20-4.65 4.20-4.70	D 12 SPT C B 13	N=16 (2,3/3,5,4,4)	4.20	2.10			
5.00 5.30-5.71 5.30-5.80	D 14 SPT C B 15	50 (8,16/18,22,10 for 35mm)	5.20	1.90			
6.00 6.70 6.90-7.13	D 16 D 17 SPT S	76 (14,11 for 25mm/	6.90	dry	Very stiff grey brown slightly sandy	6.70 +61.49	
6.90-7.20 6.90-7.40 6.90-7.40 7.80-8.08 7.80-8.10	D 18 B 19 SPT S D 20	24,26 for 50mm) 50 (10,15 for 70mm/ 25,25 for 60mm)	6.90 23/03/2012	dry	slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded to subangular fine to coarse of limestone.	(1.40)	
					EXPLORATORY HOLE ENDS AT 8.10 m	8.10 +60.09	
 Depth	Type & No	Records	Date	Time Water	-		
Groundwater Entrie No. Struck Pos (m) None observed (se	s st strike behav		Casing Depth se		Depth Related Remarks * From to (m) 1.20 6.70 Water added	5.70 - 5.70 30	ime Tools used 0 mins 0 mins
Notes: For explanatio abbreviations see key levels in metres. Strat in depth column. Scale 1:50	sheet. All dep tum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 6.481207/2012 16.52:10	Project Project No Carried ou		LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET Y2012-12B EirGrid		BH5 eet 1 of 1

Soil Mechanics

Trial Pit Log

Logged MMS Checked MNH	Start 22/03/2012 End 22/03/2012	Equipment, Methods 5 tonne track excavator	s and Remarks Dimensions and Orientation Width 1.00 m Length 2.50 m C	Ground Level Coordinates National Grid Chainage	+69.47 mOI E 644354.1 N 672181.0
Samples ar	nd Tests		Strata		
Depth	Type & No.	Date Records	Description	Depth, <i>Level</i> (Thickness)	Legend Backfill
			1 Firm greyish brown slightly sandy CLAY. Sand is fine to coarse. (TOPSOIL) 2 Firm brown CLAY.	(0.30) 	
			2 Vary candy GRAVEL with many subrounded to rounded	- (0.40) - 0.70 +68.77	
1.00 1.00	B 1 D 2		3 Very sandy GRAVEL with many subrounded to rounded cobbles. Sand is fine to coarse. Gravel is fine to coarse subrounded to rounded of various lithologies	-	
				- (1.10) 	
2.00 2.00	B 3 D 4		4 Light greyish brown very gravelly SAND. Sand is fine to medium. Gravel is fine to coarse subrounded to rounded of various lithologies.	1.80 +67.67 - - - - - (0.70)	0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°0°
2.70 2.70	B 5 D 6	22/03/2012	5 Grey SAND and GRAVEL. Sand is fine to coarse. Gravel is fine to coarse subrounded to rounded of various lithologies.	- 2.50 +66.97 - - - (0.50)	
		dry	EXPLORATORY HOLE ENDS AT 3.00 m		
Depth	Type & No.	Records Date			
roundwater Entri o. Struck Post Stril (m) None observed (se	ke Behaviour		Depth Related Remarks * From to (m)	Stability Ok t Shoring Non	e
F * ***				Weather Dry,	overcast
otes: For explanation breviations see ke vels in metres. Stra depth column. cale 1:25	y sheet. All dep atum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 6.4812/07/2012 17:05:50	Project LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid		SA1 eet 1 of 1

Logged MMS Checked MNH	Start 22/03/2012 End 22/03/2012	Equipment, Methods 5 tonne track excavator	s and Remarks	Dimensions and Or Width - Length -	rientation	180 (Deg)	Ground Level Coordinates National Grid Chainage	E	69.02 mOI 644288.4 672141.0
Samples ar	nd Tests		Strata						
Depth	Type & No.	Date Records	I	Description			Depth, Level (Thickness)	Legend	Backfill Instrum
			1 Firm greyish brown slightly sandy i rootlets. (TOPSOIL) 2 Brown very sandy GRAVEL. Sand Gravel is fine to coarse subrounded various lithologies.	is fine to coarse.		-	0.40) 0.40 +68.62		
1.00 1.00	B 1 D 2				00		- (2.40)		
2.00 2.00	B 3 D 4	* 22/03/2012 dry			rounded of litholog subrou boulder of	Inded to i cobble various rare inded to counded s (0.3m) ologies.			
		. ,	EXPLORATORY HOLE END	S AT 2.80 m		L	2.80 +66.22	<u> </u>	********
Depth	Type & No.	Records							
roundwater Entri b. Struck Post Stri (m) lone observed (se	es ke Behaviour	Date	Depth Related Remarks * From to (m) 2.00 2.80 Pit terminated due to walls collaps	ing.			Stability Poor Shoring Non Weather Dry,	е	
tes: For explanations see ke vels in metres. Stra depth column. ale 1:25	y sheet. All dep atum thickness	oths and reduced	Project LAOIS KILKENNY REI BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	FORCEMENT PROJE	ст -			SA2 eet 1 of 1	

Logged MMS Checked MNH	Start 22/03/2012 End 22/03/2012	Equipment, Methods 5 tonne track excavator	and Remarks	Dimensions and Orientation Width 2.00 m Length 7.00 m D B D 020 (Deg)	Ground Level Coordinates National Grid	Εθ	8.55 mOE 644300.85 672212.60
Samplas an			Strata	c	Chainage		
Samples an		Date		Description	Depth, Level	Legend	Backfill
Deptil	Type & No.	Records	1 Firm slightly sandy gravelly CLAY.		(Thickness)	Legenu	Instrume
			2 Firm orangish brown sandy slightly Sand is fine to coarse. Gravel is fine	- gravelly CLAY.	(0.40) 0.40 +68.15	• <u>+</u>	
-			subangular to rounded of various lith	ologies	(0.90)		
1.60 1.60	B 1 D 2		3 Brownish grey SAND and GRAVEI coarse subrounded to rounded of var with occasional subrounded to round various lithologies.	ious lithologies	1.30 +67.25		
-	υz			-	(1.70)		
2.60 2.60	B 3 D 4	22/03/2012 dry		-	- - - - - - - - - - - - - - - - - - -		
-			EXPLORATORY HOLE END	S AT 3.00 m 			
Depth	Type & No.	Records		-			
-		Date	Denth Related Pomarks *		<u> </u>		
Groundwater Entrie No. Struck Post Strik (m) None observed (see	e Behaviour		Depth Related Remarks * From to (m)		Stability Poor Shoring Non Weather Dry,	e	
lotes: For explanatic bbreviations see key evels in metres. Stra n depth column. scale 1:25	y sheet. All dep tum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 64812/07/2012 17:05:57	Project LAOIS KILKENNY REIN BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	IFORCEMENT PROJECT -		SA3 eet 1 of 1	

رر Soil Mechanics

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation Width 1.40 m Length 2.50 m □B → 180 (Deg)	Ground Level Coordinates National Grid Chainage	+69.81 mOD E 644376.32 N 672228.07
Samples an	nd Tests		Strata			
Depth	Type & No.	Date Records		cription	Depth, Level (Thickness)	Legend Backfill/
- 0.50-0.60 0.50-0.60 	B1 D2 B3 D4	Records 0.00-1.20 m Hand exca	2 Red brown slightly clayey very sandy: Gravel is fine to coarse subrounded of v lithologies. Sand is fine to coarse. 3 Grey brown gravelly SAND with high of subrounded to rounded limestone. Sand coarse. Gravel is subrounded to rounded	zarious	(0.30) 0.30 +69.51 (0.60) 0.90 +68.91	о о о о о о о о о о о о о о
- - 2.50-2.60 2.50-2.60	B 5 D 6		4 Grey gravelly SAND with low cobble of subrounded to sounded limestone. San coarse. Gravel is subrounded to rounde coarse of limestone.	- 	(1.40) 2.30 +67.51 (0.70)	
		21/03/2012 ,	EXPLORATORY HOLE ENDS A	T 3.00 m	3.00 +66.81	
				-	-	
-				-	-	
Depth	Type & No.	Records Date				
Groundwater Entrie No. Struck Post Strik (m) None observed (see	ke Behaviour		Depth Related Remarks * From to (m) 3.00 Pit terminated at required depth		Stability Mod Shoring Non Weather Ove	e
Notes: For explanatic abbreviations see kei levels in metres. Strä in depth column. Scale 1:25	y sheet. All de atum thickness	pths and reduced	Project LAOIS KILKENNY REINFO BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	DRCEMENT PROJECT -		TP1 eet 1 of 1

ogged AO hecked MNH	Start 21/03/2012 End 21/03/2012			Dimensions and Orientation Width 1.10 m Length 2.20 m □ B → 020 ((Deg) Ground Level Coordinates National Grid Chainage	+69.29 m E 644334 N 672201
Samples ar	nd Tests		Strata			
Depth	Type & No.	Date Records	Des	cription	Depth, Level (Thickness)	Legend Back
		0.00-1.20 m Hand exca	vatechin e ostrigo p it			
					- (0.30) - 0.30 +68.99	
0.50-0.60 0.50-0.60	B 1 D 2		2 Firm brown very sandy slightly gravell is fine to coarse. Gravel is subrounded fine to coarse of limestone.	to rounded	 (0.40) 	
			3 Grey gravelly SAND. Sand is fine to c high cobble content of subrounded to ro limestone. Gravel is subrounded to rou coarse of limestone.	oarse with ounded nded fine to		0 0 0 0
1.00-1.10 1.00-1.10	B 3 D 4				 (0.80) 	
			4 Brown slightly gravelly to very gravelly	SAND	- - 1.50 +67.79	
1.90-2.00 1.90-2.00	B 5 D 6		4 Brown slightly gravelly to very gravelly locally a very sandy gravel with low cob of subrounded to rounded limestone. S coarse. Gravel is subrounded to rounde coarse of limestone. Gravel and cobbles decrease with dept	ed fine to	-	
					(1.50)	
					-	р.
2.90-3.00 2.90-3.00	B 7 D 8	21/03/2012 * dry			- - 3.00 +66.29	
			EXPLORATORY HOLE ENDS A	T 3.00 m	-	
					-	
					-	
					-	
					-	
					-	
Depth oundwater Entrie	Type & No. es	Records Date	Depth Related Remarks *			
. Struck Post Stril (m) one observed (see	ke Behaviour		From to (m) 3.00 Pit terminated at required depth		Stability Mod Shoring Non Weather Rair	e
es: For explanations see key reviations see key es in metres. Stra epth column.	y sheet. All de atum thickness	and pths and reduced given in brackets ESG www.esg.co.uk 26.4812/07/2012 17:06:03	Project LAOIS KILKENNY REINFO BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	DRCEMENT PROJECT -	Trial Pit	TP2

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation Width 1.40 m Length 2.40 m ^D c 220 (Deg)	Ground Level Coordinates	+68.12 mOI +68.12 mOI E 644299.3 N 672190.0
Samples an	nd Tests		Strata			
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfill
Depth	Type & No. B 1 D 2 B 3 D 4	Date Records 0.00-1.20 m Hand exc		Y. Sand is ounded fine	Depth, <i>Level</i> (Thickness) 0.30 +67.82 (0.40) 0.70 +67.42 (0.70) 1.40 +66.72 (1.60)	
- 2.90-3.00 2.90-3.00 	ke Behaviour	21/03/2012 dry	EXPLORATORY HOLE ENDS AT	3.00 m	3.00 +65.12	
Notes: For explanatio abbreviations see ke evels in metres. Stra n depth column. Scale 1:25	y sheet. All de atum thickness	pths and reduced	Project LAOIS KILKENNY REINFO BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	RCEMENT PROJECT -		TP3 eet 1 of 1

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca	s and Remarks avator	Dimensions and Orientation Width 1.40 m Length 2.50 m pB ➡ 100 (Deg)	Ground Level Coordinates National Grid Chainage	E	9.04 mOI 644333.0 672183.7
Samples ar	nd Tests		Strata				
Depth	Type & No.	Date Records	Desc	ription	Depth, <i>Level</i> (Thickness)	Legend	Backfill Instrum
		0.00-1.20 m Hand exca	vatedinemetismetismetismetismetismetismetismeti		(
				-	(0.40)		
				-	(0.40)		
					0.40 +68.64	8 10	
			2 Grey brown gravelly SAND with high co of subrounded to rounded limestone. Sa	nd is fine to		 	
			coarse. Gravel is subrounded to rounded coarse of limestone.	d fine to		<i>ہ</i> .	
				-		0	
0.90-1.00	B 1			-	(1.00)	°	
0.90-1.00	D2				(1.00)		
				-		0	
				-		• •	
				-		0.0	
			3 Brown fine to coarse SAND with rare r	ounded gravel	1.40 +67.64		
			of various lithologies.	-			
				-			
				-			
1.90-2.00 1.90-2.00	B 3 D 4			-			
1.90-2.00	04			_			
				-	(1.60)		
				-	(1.00)		
				-			
				-			
				-			
				-			
2.90-3.00	B 5	21/03/2012		-			
2.90-3.00	D6	* dry			3.00 +66.04		
			EXPLORATORY HOLE ENDS AT	3.00 m -			
				-			
				-			
				-			
				-	-		
				-			
				-			
				-			
				-			
				-			
				-			
				-	1		
				-	1		
				-			
				-			
Depth	Type & No.	Records			}		
roundwater Entri		Date	Depth Related Remarks *				
o. Struck Post Stril (m)			From to (m)		Stability Mod	erate	
None observed (se	e Key Sheet)		3.00 Pit terminated at required depth		Shoring None	Э	
					Weather Rain		
otes: For explanation	on of symbols	and					
breviations see ke vels in metres. Stra	y sheet. All de	oths and reduced given in brackets	Project LAOIS KILKENNY REINFOI BALLYRAGGET	RUEMENT PROJECT -	Trial Pit	TD4	
depth column.		ESG www.esg.co.uk	Project No. Y2012-12B Carried out for EirGrid			TP4	

	-			2	oil Mechanics
Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Ground Level Coordinates National Grid Chainage	+69.18 m E 644345 N 672169
Samples ar	nd Tests		Strata		
Depth	Type & No.	Date Records	Description	Depth, Level (Thickness)	Legend Back
		0.00-1.20 m Hand exca	vatedhiutedation and the state of the state		
			- 2 Firm orange brown sandy gravelly CLAY with low	(0.40) 0.40 +68.78	<u>•</u> _
			cobble content of subrounded limestone. Sand is fine to coarse. Gravel is subrounded fine to coarse of limestone.	0.60 +68.58	
0.90-1.00 0.90-1.00 1.00	B 1 D 2 HV	p 37kPa, r 4kPa	3 Grey brown very sandy GRAVEL with high cobble content. Sand is fine to coarse. Gravel is subrounded to rounded fine to coarse of limestone. Occasional lense of brown fine to medium sand.		
				(1.10)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.90-2.00 	B 3 D 4		4 Light brown slightly gravelly SAND with low cobble content of subrounded to rounded limestone. Sand is fine to medium. Gravel is subrounded to rounded fine to coarse of limestone.	1.70 +67 <i>.4</i> 8	
			-	(1.30)	, , , , , , , , , , , , , , , , , , ,
2.90-3.00 2.90-3.00	B 5 D 6	21/03/2012 dry	- 	· · · 3.00 +66.18	
Depth	Type & No.	Records Date			
Froundwater Entrie lo. Struck Post Stril (m) None observed (see	ke Behaviour	Pate	Depth Related Remarks * From to (m)	Stability Goo Shoring Non Weather Rair	e
otes: For explanation obreviations see key vels in metres. Stra depth column. cale 1:25	y sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid		TP5 eet 1 of 1

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation Width 1.40 m Length 2.50 m D B + 190 (Deg	Ground Level Coordinates National Grid Chainage	+68.41 mC E 644335. N 672155.
Samples ar	d Tests		Strata			
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend Backfi
		0.00-1.20 m Hand exca	vatedineceptisonit		(Therefore)	
0.50-0.60 0.50-0.60	B 1 D 2		2 Soft orange brown very sandy slightly with low cobble content of subrounded li Sand is fine to coarse. Gravel is subrour rounded fine to coarse of limestone.	gravelly CLAY mestone. ided to	- (0.30) - 0.30 +68.11 -	• + • -
0.90	HV	p 31kPa, r 5kPa			- (0.90) -	
1.50-1.60 1.50-1.60	B 3 D 4		3 Grey brown gravelly fine to coarse SAI cobble content of subrounded to rounder Gravel is subrounded to rounded fine to limestone.	- ND with high d limestone. coarse of	- 1.20 +67.21 	
2.50-2.60 2.50-2.60	B 5 D 6	21/03/2012 dry		-	- (1.80) 	
			EXPLORATORY HOLE ENDS AT	3.00 m	- 3.00 +65.41	
Depth	Type & No.	Records			-	+
roundwater Entrie lo. Struck Post Stril (m) None observed (see	es ke Behaviour	Date	Depth Related Remarks * From to (m) 3.00 Pit terminated at required depth		Stability Mod Shoring Non Weather Rair	e
otes: For explanation obreviations see key vels in metres. Stra depth column. cale 1:25	y sheet. All de atum thickness	and pths and reduced given in brackets ESG www.esg.co.uk 26.481207/2012 17.06:16	Project LAOIS KILKENNY REINFOL BALL/RAGGET Project No. Y2012-12B Carried out for EirGrid	RCEMENT PROJECT -		TP6 eet 1 of 1

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation Width 0.30 m Length 2.50 m □ _ B → 230 (Deg)	Ground Level Coordinates National Grid Chainage	+68.62 m0 E 644310 N 672152
Samples a	nd Tests		Strata			
Depth	Type & No.	Date Records	Des	cription	Depth, Level (Thickness)	Legend Back
		0.00-1.20 m Hand exca	vatechingeoptigon		(11.01.1000)	
				-	(0.30)	
			2 Prouge along a clightly grouply fing to a		0.30 +68.32	0
			2 Brown clayey slightly gravelly fine to c Gravel is subrounded to rounded fine to	o coarse of	-	• <u> </u>
0.50-0.60 0.50-0.60	B1 D2		various lithologies.	-	(0.40)	<u>- </u>
				-	0.70 +67.92	. @ -
			3 Grey brown gravelly fine to coarse SA sandy GRAVEL with high cobble conter	ND locally nt of subrounded	0.70 +07.52	°
			to rounded limestone. Gravel is subrout fine to coarse of limestone.	nded to rounded	-	Þ
						à °.
				-	-	° – °
				-		
				-	-	0.0
1.50-1.60 1.50-1.60	B 3 D 4			-	(1.70)	- 0 · · ·
1.50-1.60				-	(1.70)	
				-	1	
				-		
						°-0°-
				-	-	₽ °
				-		â
					2.40 +66.22	°
2.50-2.60	B 5		4 Brown slightly gravelly fine to coarse low cobble content of subrounded to ro	SAND with unded ⁻	2.40 400.22	° ° °
2.50-2.60	D 6		limestone.	-	-	₽ ° °
				-	(0.60)	· ۵
		21/03/2012		-		
		* dry			3.00 +65.62	
			EXPLORATORY HOLE ENDS A	T 3.00 m -	-	
				-		
				-		
				-	-	
				-	-	
				-	-	
				-		
				-	-	
				-		
				-	1	
				-		
				-	-	
				-		
				-	1	
				-		
Dewith	Traci	Records				
Depth roundwater Entri	Type & No.	Date	Depth Related Remarks *			
lo. Struck Post Stri (m)			From to (m)		Stability Goo	d
None observed (se	e Key Sheet)		3.00 Trial pit terminated at required depth		Shoring None	e
					Weather Rain	
otes: For explanati	ion of symbols a	and	Project LAOIS KILKENNY REINFO	DRCEMENT PROJECT -	Trial Pit	
breviations see ke vels in metres. Str depth column.	atum thickness	pths and reduced given in brackets	BALLYRAGGET Project No. Y2012-12B	-		TP7
cale 1:25	(c)	ESG www.esg.co.uk 26.4812/07/2012 17:06:23	Carried out for EirGrid			et 1 of 1

Soil Mechanics

						oil Mecha	
Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation Width 1.40 m Length 2.40 m ^D [▲] B → 240 (Deg)	Ground Level Coordinates National Grid Chainage	E	9.14 mOD 644280.49 672153.85
Samples an	d Tosts		Strata				
		Date		ription	Depth, Level	Laward	Backfill/
Depth	Type & No.	Records 0.00-1.20 m Hand exca			(Thickness)	Legend	Instrume
000400			2 Brown clayey slightly gravelly fine to co Gravel is subrounded to rounded fine to limestone. 3 Grey brown gravelly fine to coarse SAN sandy GRAVEL with high cobble content to rounded limestone. Gravel is subround fine to coarse of limestone.	vD locally -	(0.30) 0.30 +68.84 0.50 +68.64		
0.90-1.00 0.90-1.00	B 1 D 2			-	(2.50)	b v. v. b v. b. v. b.	
1.90-2.00 _ 1.90-2.00	B 3 D 4			- - - - - - - - - - - - - - - - - - -		v. v b. v. v b. v. v v.	
2.90-3.00 2.90-3.00	B 5 D 6	21/03/2012 dry		-	3.00 +66.14	°	
-		Records	EXPLORATORY HOLE ENDS AT	3.00 m			
Depth	Type & No.	Records Date					
Groundwater Entrie Io. Struck Post Strik (m) None observed (see	e Behaviour		Depth Related Remarks * From to (m) 3.00 Pit terminated at required depth		Stability Goo Shoring Non- Weather Rain	e	
Notes: For explanatio lbbreviations see key evels in metres. Strat n depth column. Scale 1:25	/ sheet. All dep tum thickness	and oths and reduced given in brackets ESG www.esg.co.uk 6.4812/07/2012 17:06:25	Project LAOIS KILKENNY REINFO BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	RCEMENT PROJECT -		TP8 eet 1 of 1	

Logged AO Checked MNH	Start 21/03/2012 End 21/03/2012			Dimensions and Orientation Width 1.40 m Length 2.40 m ^D B → 020 (Deg)	Ground Level Coordinates National Grid Chainage	Εθ	9.25 mOl 644272.9 672179.5
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend	Backfil Instrum
-		Date Records 0.00-1.20 m Hand exca p 14kPa, r 4kPa	Desc	- 	Depth, <i>Level</i> (Thickness) (0.40) 0.40 +68.85		
2.70-2.80	B 5 D 6	21/03/2012 dry	EXPLORATORY HOLE ENDS AT	2.50 m 1 large - limestone boulder (800mm) - 2.80 m - 	2.80 +66. <i>4</i> 5		
Depth Groundwater Entri No. Struck Post Stri (m)	ike Behaviour	Records Date	Depth Related Remarks * From to (m) 2.80 Pit terminated due to instability		Stability Poor		
None observed (se lotes: For explanati bbreviations see ke vels in metres. Stra depth column. cale 1:25	on of symbols by sheet. All de atum thickness	oths and reduced	Project LAOIS KILKENNY REINFO BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	RCEMENT PROJECT -			

رر Soil Mechanics

Logged AO	Start 21/03/2012	Equipment, Methods Caterpillar 6 Tonne Exca		Dimensions and Orientation	Ground Level Coordinates	+69.05 mC E 644264.0
Checked MNH	End 21/03/2012			Width 1.40 m Length 2.50 m □ C B → 350 (Deg		N 672205.
Samples an	d Tests		Strata			
Depth	Type & No.	Date Records		scription	Depth, Level (Thickness)	Legend Backfi
- - - - 0.50-0.60 0.50-0.60	B 1 D 2	0.00-1.20 m Hand exc	vated in performit 2 Firm orange brown very sandy slight CLAY. Sand is fine to coarse. Gravel is rounded fine to coarse of various lithol	s subrounded to	(0.30) 0.30 +68.75 (0.40)	• • •
· · · · · · · · · · · · · · · · · · ·			3 Grey brown fine to coarse SAND.		- 0.70 +68.35	·
- 0.90 - -	D 3		4 Grey brown slightly gravelly to very g locally a sandy GRAVEL with medium subrounded to rounded limestone. Sar coarse. Gravel is subrounded to round coarse of limestone. Becoming gravelly with high cobble co	cobble content of d is fine to ed fine to	(0.30) 1.00 +68.05	
- 1.50-1.60 1.50-1.60	B 4 D 5			-	(2.00)	
- 2.90-3.00 2.90-3.00	B6 D7	21/03/2012 * dry	EXPLORATORY HOLE ENDS A	νΤ 3.00 m	3.00 +66.05	
Depth	Type & No.	Records				
Groundwater Entrie No. Struck Post Strik (m) None observed (see	es le Behaviour	Date	Depth Related Remarks * From to (m) 3.00 Pit terminated at required depth		Stability Poor Shoring None	
Notoo: Eta aurilia arti	op of comet -1	and			Weather Rain	
Notes: For explanationabbreviations see key levels in metres. Stra in depth column. Scale 1:25	/ sheet. All dep tum thickness	oths and reduced	Project LAOIS KILKENNY REINF BALLYRAGGET Project No. Y2012-12B Carried out for EirGrid	UKCEMENT PROJECT -		FP10 eet 1 of 1

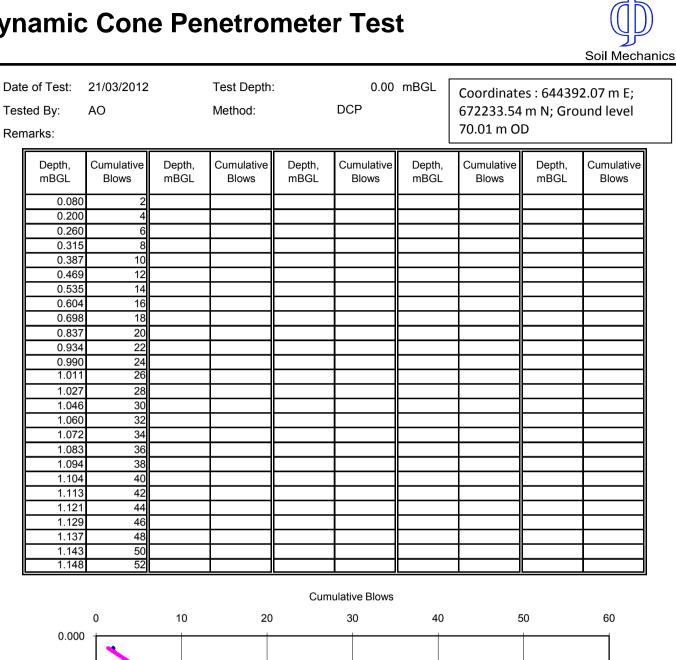
ENCLOSURE B INSTRUMENTATION AND MONITORING

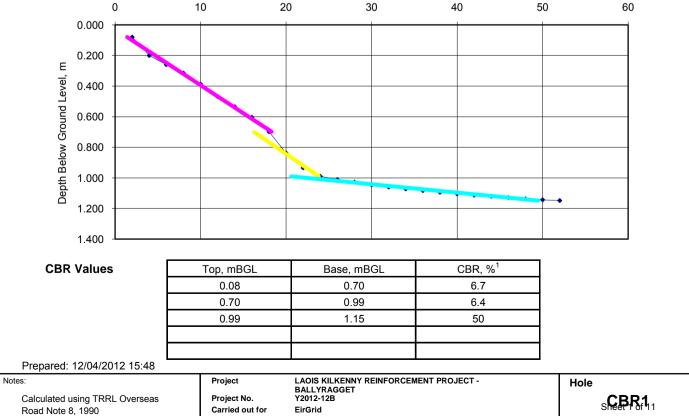
Installation Details

B1

Groundwater Installation Details

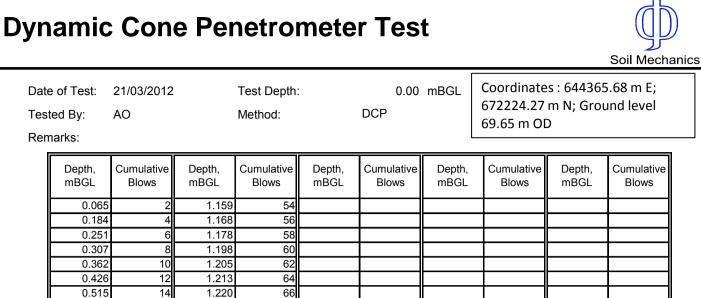
Hole No	Instrument ID	Installation Type	Date of Installation	Reference depth (mBGL)	Piezometer Diameter (mm)	Top of response zone (mBGL)	Base of response zone (mBGL)	Tubing Completion Details	Headworks	Remarks
BH1	<u> </u>	SP	27 Mar 201	2 0.00	<u> </u>	<u>н N</u> 1.00	<u> </u>	Gas tap	⊥ Stop cock cover	
Notes: Type: S Piezometer, HI	ъР - Stan РЕ - Ния	dpipe, SPIE - fraulic Piezom	Standpipe leter, PPIE -	Project	LAOIS	KILKENNY RE	INFORCEMEN	Γ PROJECT -		Table
Pneumatic Pie Piezometer Pro	epared: ()5/07/2012 14	AGS	Project No. Carried out for	Y2012 EirGrie					B1 Sheet 1 of 1


ENCLOSURE C


Dynamic Cone Penetrometer Tests with CBR values

CBR1 To 11

Soakaway Tests


SKWY/SA1/1 to 3, SKWY/SA2/1 to 3 SKWY/SA3/

Dynamic Cone Penetrometer Test

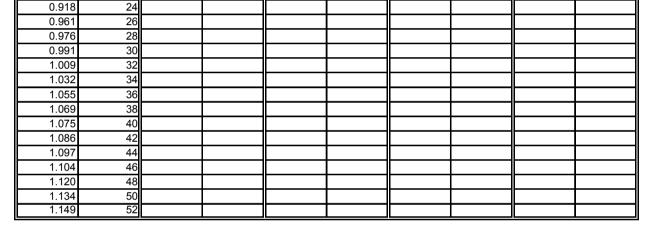
0.633

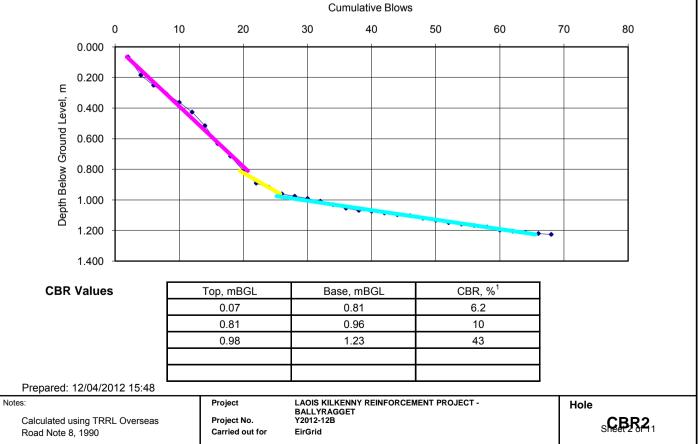
0.715

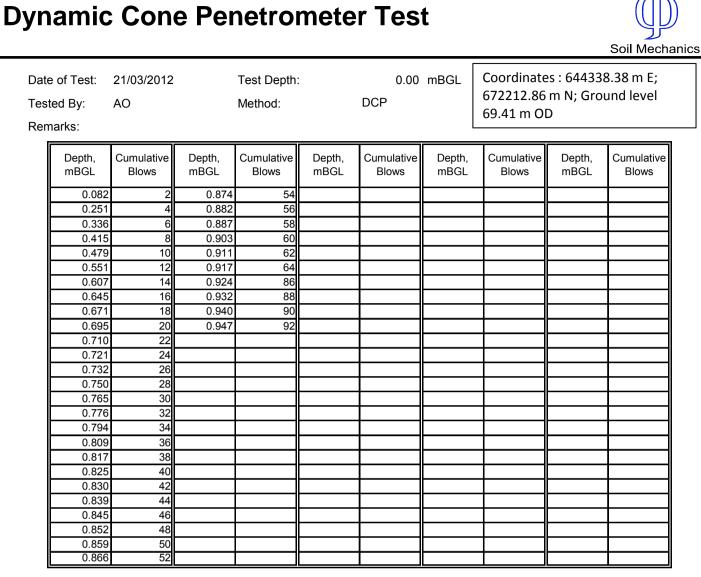
0.810

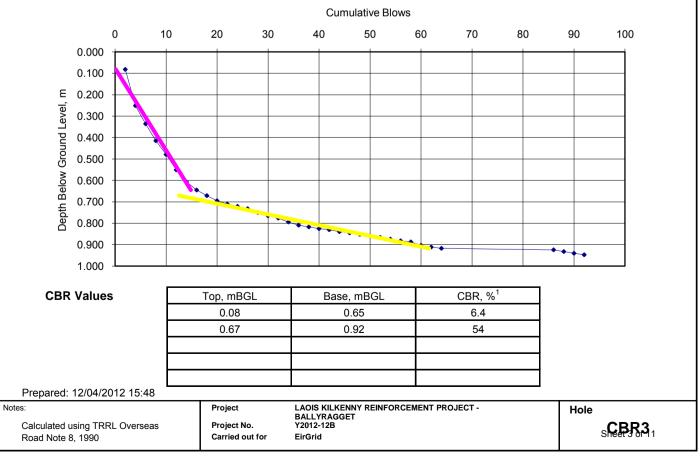
0.891

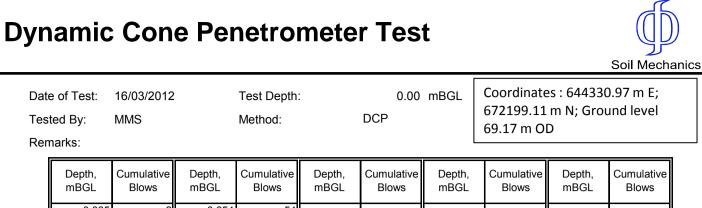
16

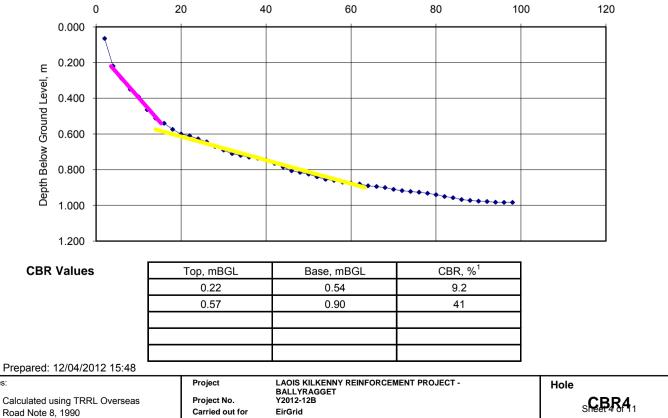

18


20


22


1.226


68



Teste	Date of Test: 16/03 Tested By: MMS Remarks:			Test Depth: Method:		0.00 DCP	mBGL	Coordinates : 644330.97 m E; 672199.11 m N; Ground level 69.17 m OD					
	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows			
	0.065	2	0.854	54									
	0.220	4	0.860	56									
	0.290	6	0.870	58									
	0.350	8	0.875	60									
	0.392	10	0.880	62									
	0.464	12	0.890	64									
	0.512	14	0.894	66									
	0.540	16	0.900	68									
	0.574		0.910	70									
	0.600	_	0.917	72									
	0.610		0.922	74									
	0.627	24	0.926	76									
	0.644		0.932	78									
	0.670		0.940	80									
	0.690		0.950	82									
	0.710		0.957	84									
	0.720		0.967	86									
	0.730		0.972	88									
	0.735		0.976	90									
	0.745		0.978	92									
	0.765		0.982	94									
	0.785		0.983	96									
	0.806	-	0.983	98									
╟	0.815					 				 			
╟	0.825			I						 			
Ľ	0.840	52											
		_			Cum	ulative Blows							
		0	20	40		60	80	10	00	120			

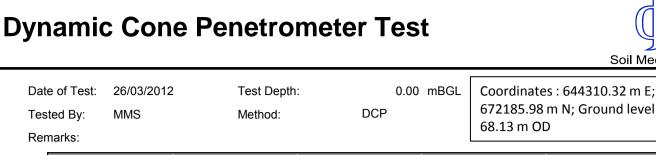
Notes:

г

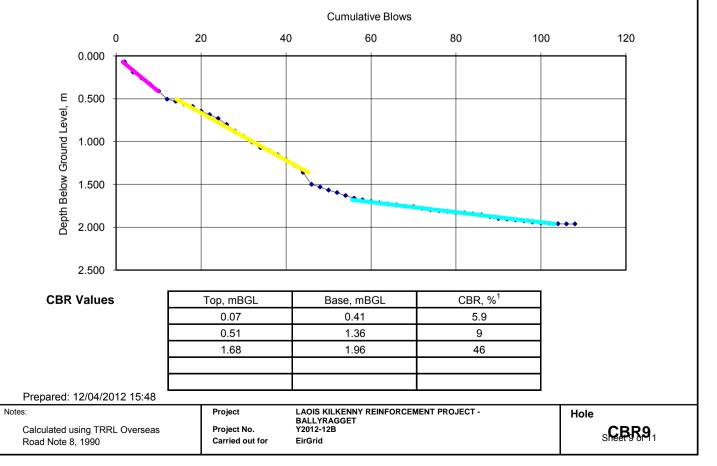
Date of Test:	26/03/2012		Test Depth	:		mBGL		oordinates : 644297.84 m E; 72191.80 m N; Ground level				
Tested By:	MMS		Method:		DCP		68.13 m OD					
Remarks:						l						
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows			
0.085		1.752										
0.215		1.777	56									
0.270		1.790										
0.340		1.810 1.822										
0.400		1.834										
0.520		1.842										
0.594		1.852	68									
0.650		1.859										
0.725		1.867	72									
0.850		1.872										
0.900		1.882 1.887							+			
1.090		1.893										
1.238		1.914							1			
1.390) 32	1.917	84									
1.415		1.917	86									
1.440												
1.455 1.488												
1.525												
1.570												
1.610	9 46											
1.650												
1.696												
1.727	7 52											
0.000 E 0.500 P P D 1.000		20	30	40	ulative Blows 50	60	70 80	90	100			
Depth Below Ground Level Depth Below 2.000				• • •								
2.000 E								•				
2.500	-]			
CBR Valu	es		mBGL 22	Î.	, mBGL .09	CI	BR, % ¹ 6.8					
	ŀ		09		.09 .44		5.5					
			44		.87		21					
Prepared: 12/04/	/2012 15:48											
Alculated using TRRL Overseas Project No. and Note 8, 1990 Carried out for			ect No.	LAOIS KILKEN BALLYRAGGE Y2012-12B EirGrid	INY REINFORCEN T	Hole sheet 9051						

Dynamic Cone Penetrometer Test

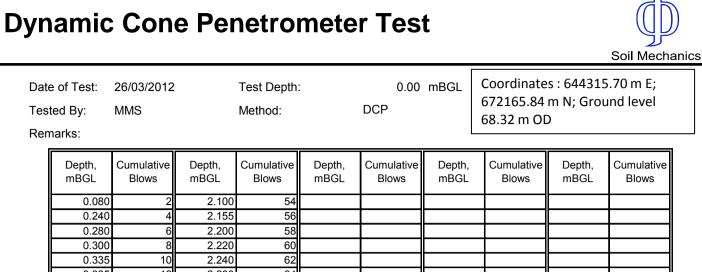
Date of Test: Tested By: Remarks:	26/03/2012 MMS		Test Depth: Method:		0.00 DCP	mBGL	Coordinate 672174.91 68.29 m OE	m N; Gro	-
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows
0.075	2	0.470	54	0.640	106				
0.135	4	0.480	56	0.645	108				
0.180		0.490	58	0.655					
0.235		0.495	60	0.660					
0.240		0.500	62 64	0.670					
0.340		0.520	66	0.680					
0.295		0.525	68	0.680					
0.310		0.530	70	0.690					
0.325		0.535	72	0.700					
0.345		0.560	74	0.705					
0.385		0.550	76	0.720					
0.355		0.565	78 80	0.730 0.740			_ _		
0.365		0.590	82	0.740					
0.375		0.575	84	0.765					
0.385		0.585	86	0.775		88 40			
0.395		0.595	88	0.785					
0.415		0.600	90	0.795					
0.415		0.605	92	0.805					
0.425		0.612	94	0.810	146				
0.455		0.610	96 98						
0.450		0.615	98 100						
0.485		0.625	100						
0.465		0.635	104						
0.000 0.100 E 0.200 0.300 0.400 0.500 0.500 0.500 0.600 0.700 0.800 0.800 0.900			60	80	100 1		40 160		
1.000									
CBR Value	es	-	mBGL 08		mBGL 30	CI	3R, % ¹ 19		
			30 51		48 92		68 82		
Dronarad: 12/04/	2012 15:49								
Prepared: 12/04/2 es: Calculated using TF Road Note 8, 1990			ect No.	LAOIS KILKEN BALLYRAGGE Y2012-12B EirGrid	NY REINFORCEN T	IENT PROJEC	Hole Sheet 9 66 1		

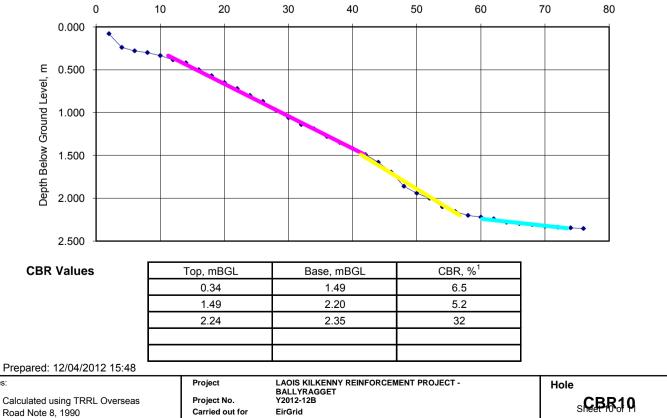


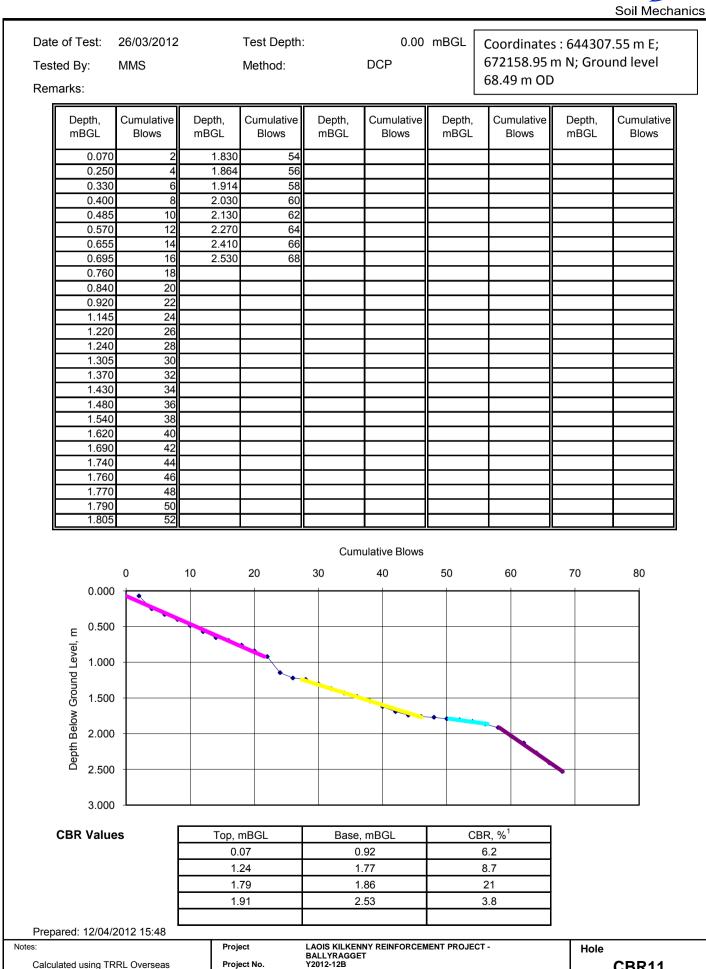
Date of Test: Tested By:	26/03/2012 MMS		Test Depth: Method:	Coordinate 672181.92 69.09 m O	m N; Gro	-				
Remarks:							05.05 11 0			
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	
0.080		0.672	54	0.825	106					
0.175		0.681	56	0.828						
0.244		0.688	58	0.832	110					
0.310 0.340		0.695	60 62	0.835 0.838	112 114				╂───┨	
0.365		0.718	64	0.842	114				11	
0.395		0.720	66	0.848	118					
0.450		0.725	68	0.852	120					
0.480		0.730	70	0.858	122					
0.509		0.740	72 74	0.868 0.872	124 126				<u> </u>	
0.540		0.750	74	0.878	120				<u> </u>	
0.550		0.753	78	0.885						
0.565		0.760	80	0.890	132					
0.580		0.765	82	0.895	134	-				
0.590		0.770 0.775	84 86	0.900	136 138					
0.610		0.775	88	0.904	130				<u>+ </u>	
0.618		0.785	90	0.910						
0.624	40	0.795	92	0.916	144					
0.630		0.797	94	0.922	146					
0.640		0.800	96				_			
0.642		0.805	98 100						<u> </u>	
0.660		0.815	100						1 1	
0.665		0.818	104							
0.000 0.100 0.200 0.300 0.400 0.500 0.500 0.500 0.700 0.700 0.800		20	40	Cum	Ilative Blows 80	100	120	140	160	
pung 0.400										
ප 0.500										
<u></u> 0.600										
<u>ه</u> 0.700) <u> </u>			****						
008.0 eff					********					
_										
0.900								***		
1.000										
CBR Value		Top	nBGL	Daaa	mBGL	CT	3R, % ¹			
CBR Value	50		08		48		10			
			51		92		94			
			•							
Prepared: 12/04/2	2012 15:48	Proje								
Notes: Calculated using TR Road Note 8, 1990	Calculated using TRRL Overseas			LAOIS KILKEN BALLYRAGGE Y2012-12B EirGrid	ENNY REINFORCEMENT PROJECT - SET			Hole Sheet Port		



Dynamic Cone Penetrometer Test

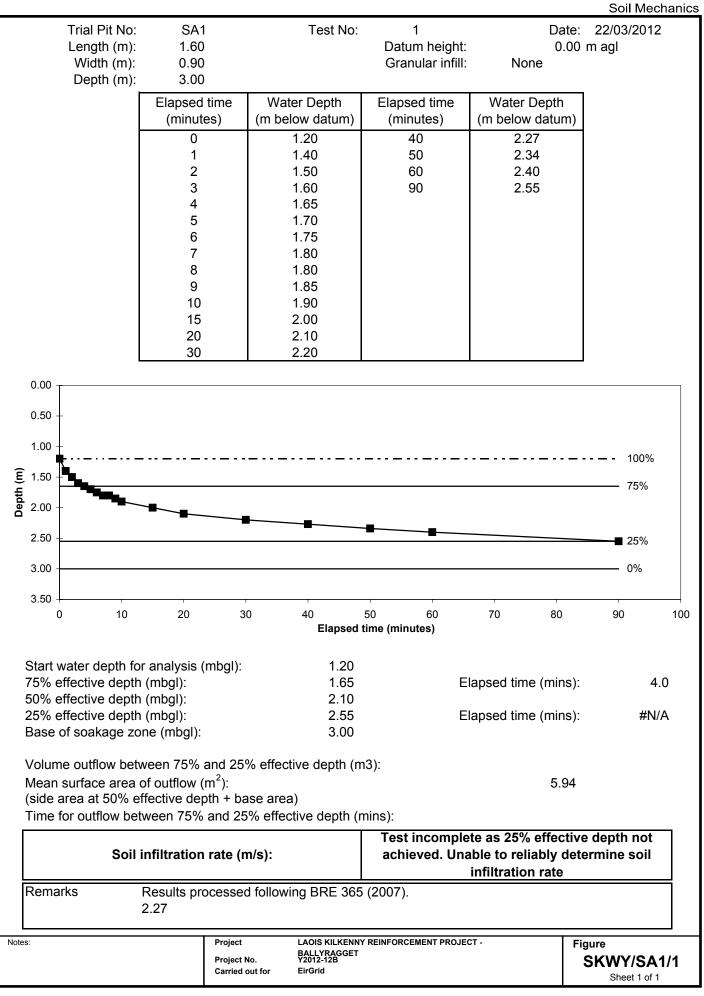

ate of Test:	26/03/2012		Test Depth:			mBGL	Coordinates : 644339.81 m E; 672163.15 m N; Ground level				
ested By: Remarks:	MMS		Method:		DCP		68.76 m OE				
Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows	Depth, mBGL	Cumulative Blows		
0.060	2	0.530	54	0.970	162						
0.160	4	0.533	56								
0.220		0.540	58								
0.275		0.550	60						_		
0.290		0.560 0.566	62 64								
0.310		0.500	66								
0.338		0.590	68								
0.354		0.595	70								
0.365	20	0.600	72								
0.370		0.608	74								
0.375		0.615	76								
0.381		0.620	78 80								
0.393		0.635	82								
0.427		0.640	84								
0.440		0.650	86								
0.450		0.652	88								
0.462		0.658	90								
0.470		0.662	92								
0.477	42 44	0.684 0.708	97 102								
0.483		0.708	102								
0.500		0.770	122								
0.515 0.520		0.805 0.938	132 152								
		20 4	0 60	Cumi 80	ulative Blows 100	120	140	160	180		
0.000											
E 0.200											
Debth Below Ground Level Tevel Debth Below Ground Level 1 000			****	· · · · · · · · · · · ·	.						
860 Below 0.800	,										
	,							• •			
1.200											
CBR Value	es	Тор, і	mBGL	Base,	mBGL	С	3R, % ¹				
			05	0	.25		6.1				
		0.	30	0.	.71		64				
repared: 12/04/2	2012 15:48										
		Proje	ect	LAOIS KILKEN BALLYRAGGE		MENT PROJEC	:T -	Hole			
alculated using TR oad Note 8, 1990	RL Overseas		ect No.	Y2012-12B EirGrid					sheet sold 1		

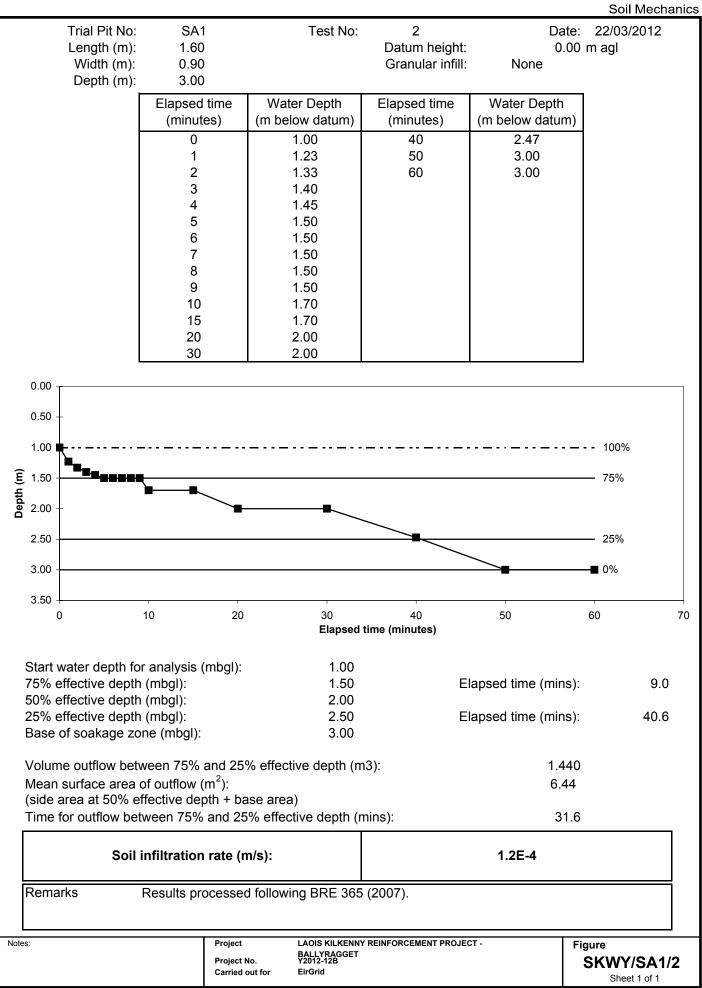

Depth, mBGL	Cumulative Blows								
0.070	2	1.630	54	1.961	106				
0.190	4	1.660	56	1.961	108				
0.260		1.680	58						
0.330	8	1.700	60						
0.410	10	1.715	62						
0.505	12	1.730	64						
0.530	14	1.740	66						
0.560	16	1.755	68						
0.590	18	1.760	70						
0.645	20	1.780	72						
0.685	22	1.795	74						
0.730	24	1.806	76						
0.800	26	1.815	78						
0.880	28	1.828	80						
0.940	30	1.833	82						
1.005	32	1.845	84						
1.072	34	1.855	86						
1.106	36	1.877	88						
1.154	38	1.899	90						
1.212	40	1.905	92						
1.275	42	1.915	94						
1.360	44	1.925	96						
1.500	46	1.940	98						
1.530	48	1.950	100						
1.567	50	1.955	102						
1.595	52	1.959	104						

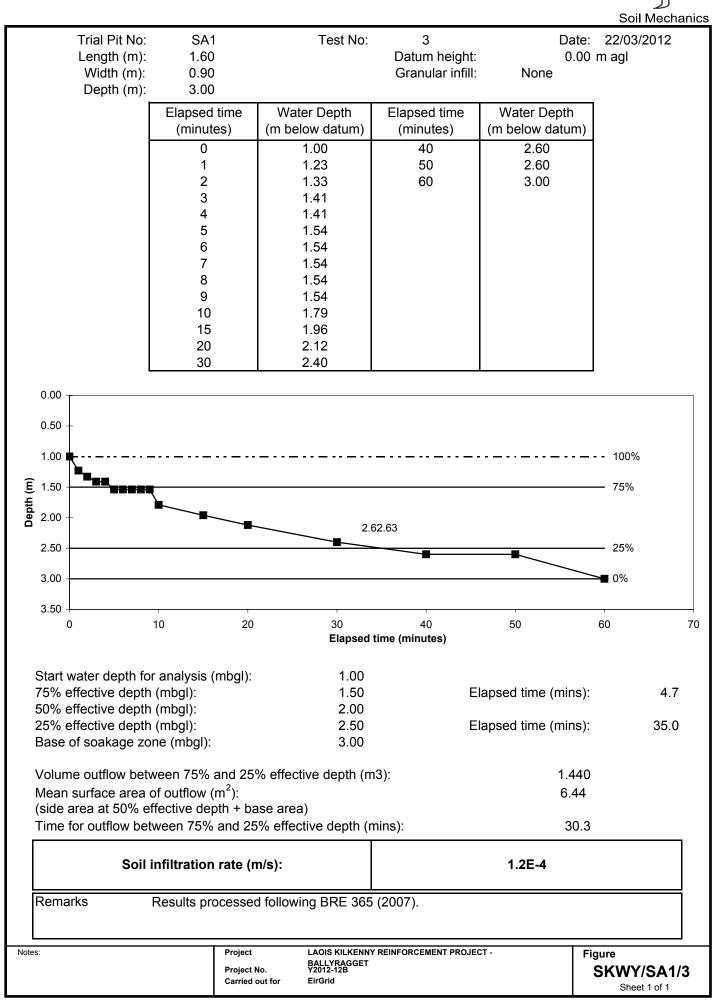

Soil Mechanics

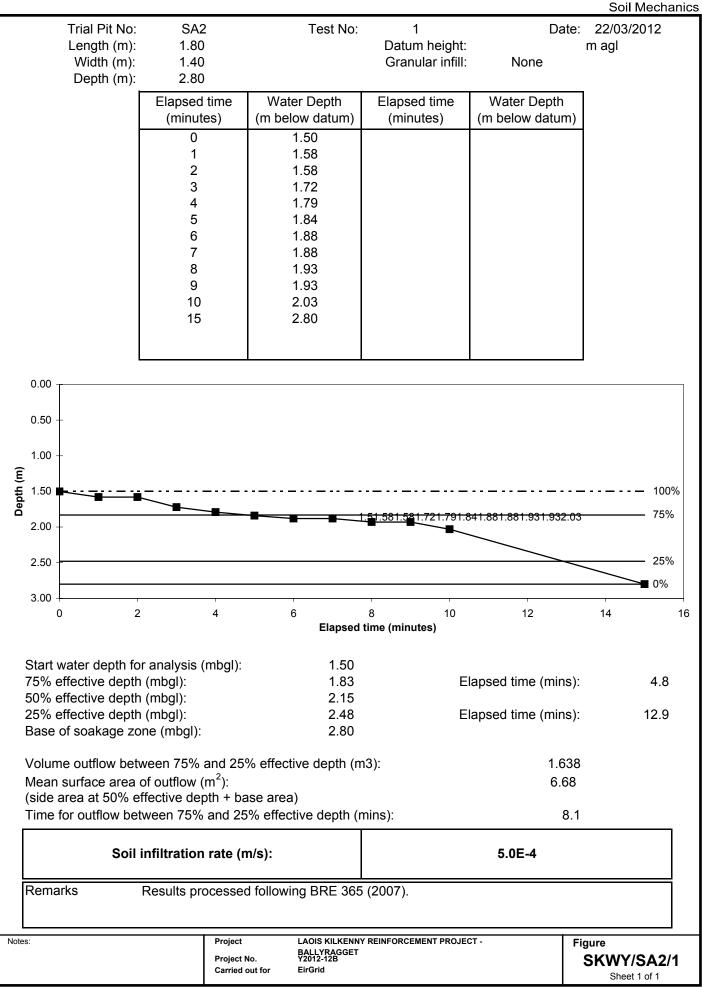
Depth, mBGL	Cumulative Blows								
0.080	2	2.100	54						
0.240	4	2.155	56						
0.280	6	2.200	58						
0.300	8	2.220	60						
0.335	10	2.240	62						
0.385	12	2.280	64						
0.420	14	2.295	66						
0.500	16	2.308	68						
0.570	18	2.328	70						
0.650	20	2.338	72						
0.720	22	2.345	74						
0.800	24	2.353	76						
0.870	26								
0.970	28								
1.060	30								
1.140	32				┨────┨				
1.190	34								
1.280	36 38				+				
1.350 1.420	38 40				╂────┨				
1.420	40				╂────╢		-}		
1.490	44				╂────╢				
1.695	46				╂────┨		<u> </u>		
1.860	48				1 1				
1.940	50				╉───╢		╉		
2.000	52				╉───╢		╉╋		

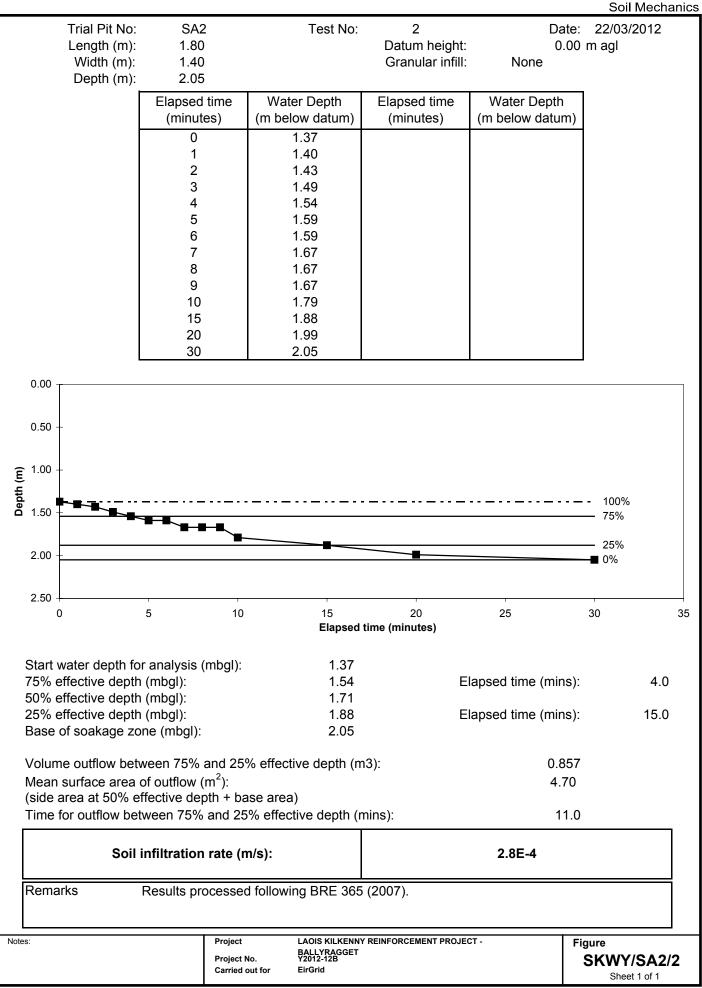
Notes:

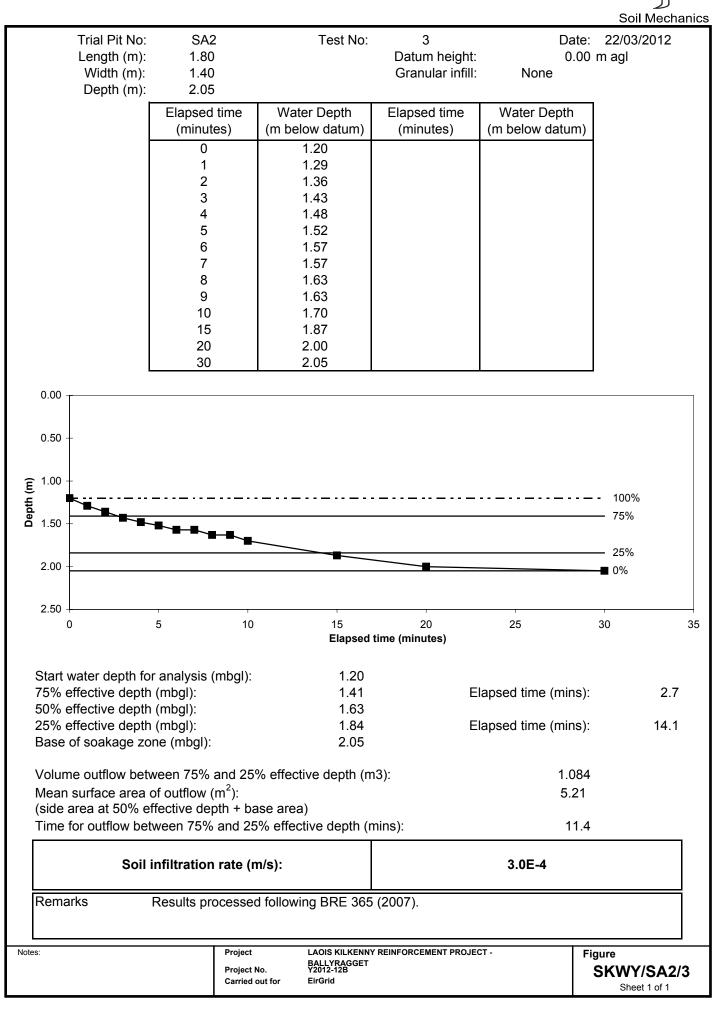

Dynamic Cone Penetrometer Test

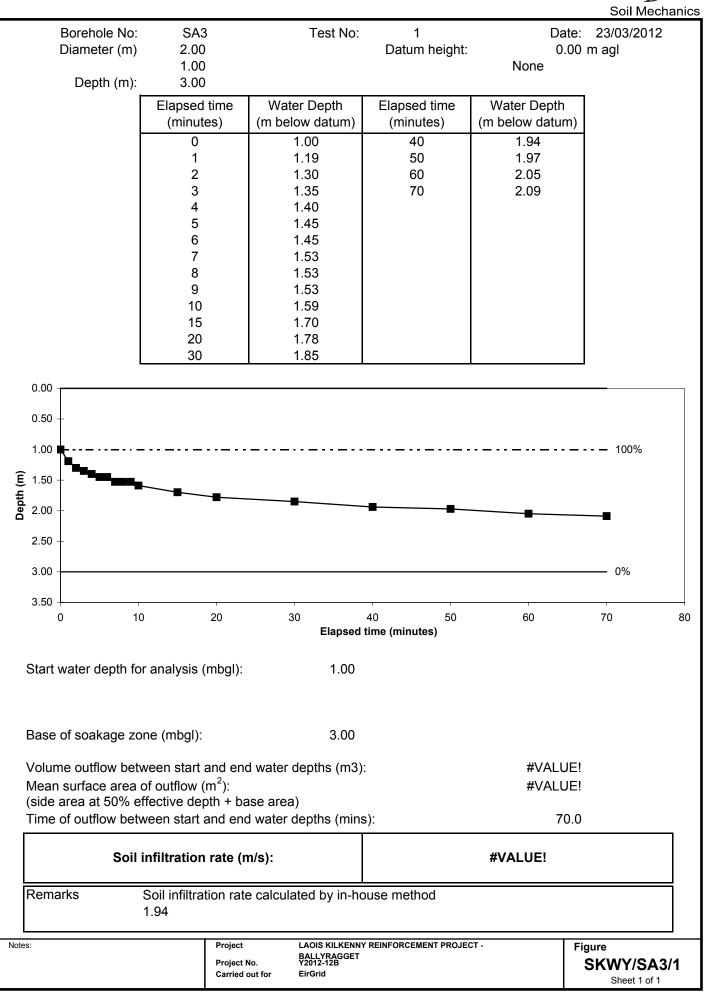

Calculated using TRRL Overseas Road Note 8, 1990


EirGrid


Carried out for







Soil Mechani

ENCLOSURE D GEOTECHNICAL LABORATORY TEST RESULTS

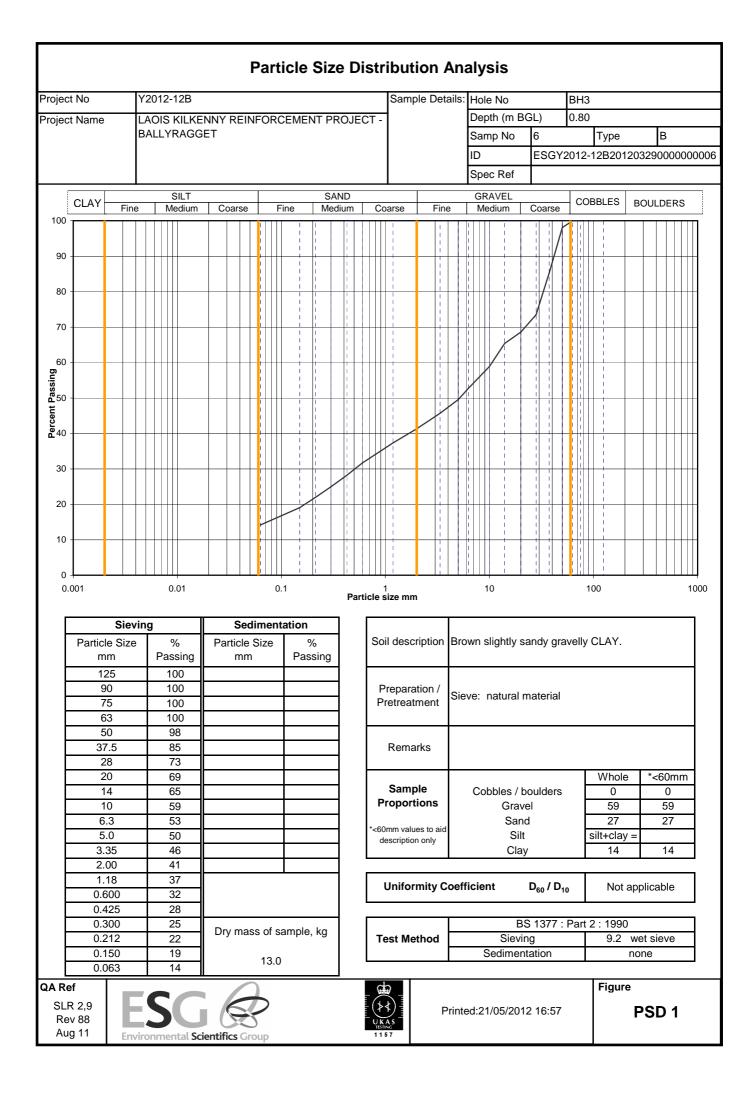
Index Properties – Summary of Results Particle Size Distribution Analyses Chemical Tests – Summary of Results INDX 1 PSD 1 to 18 CHEM 1 Project Name

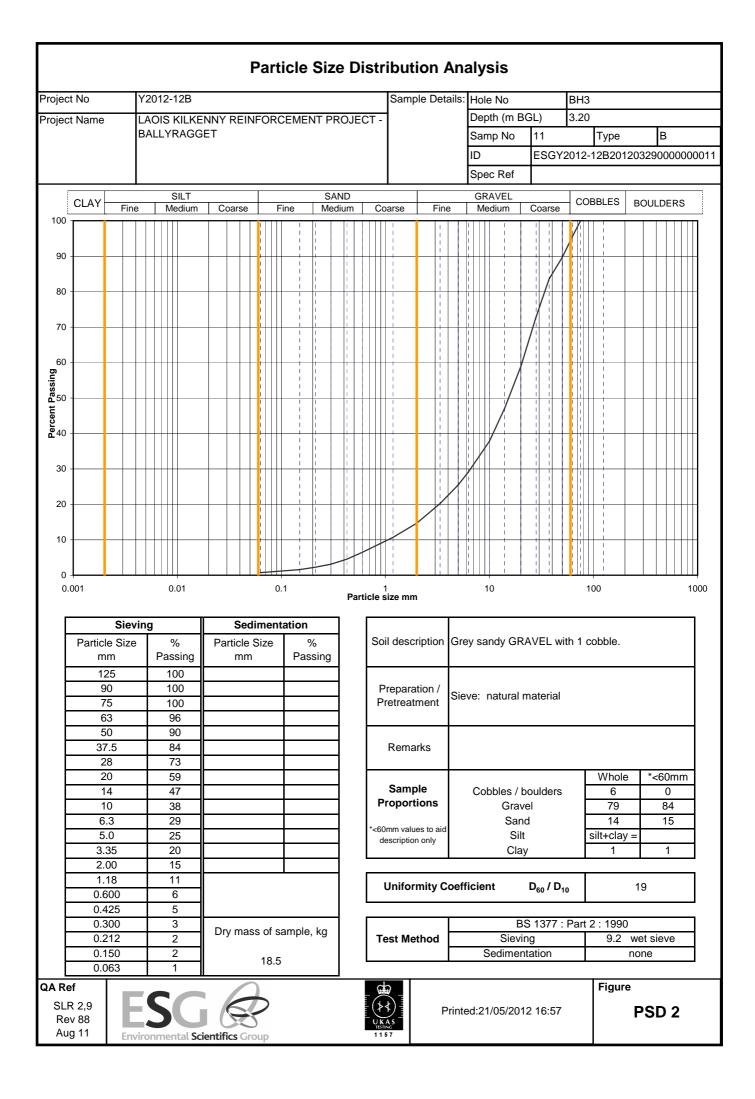
Project No. Y2012-12B

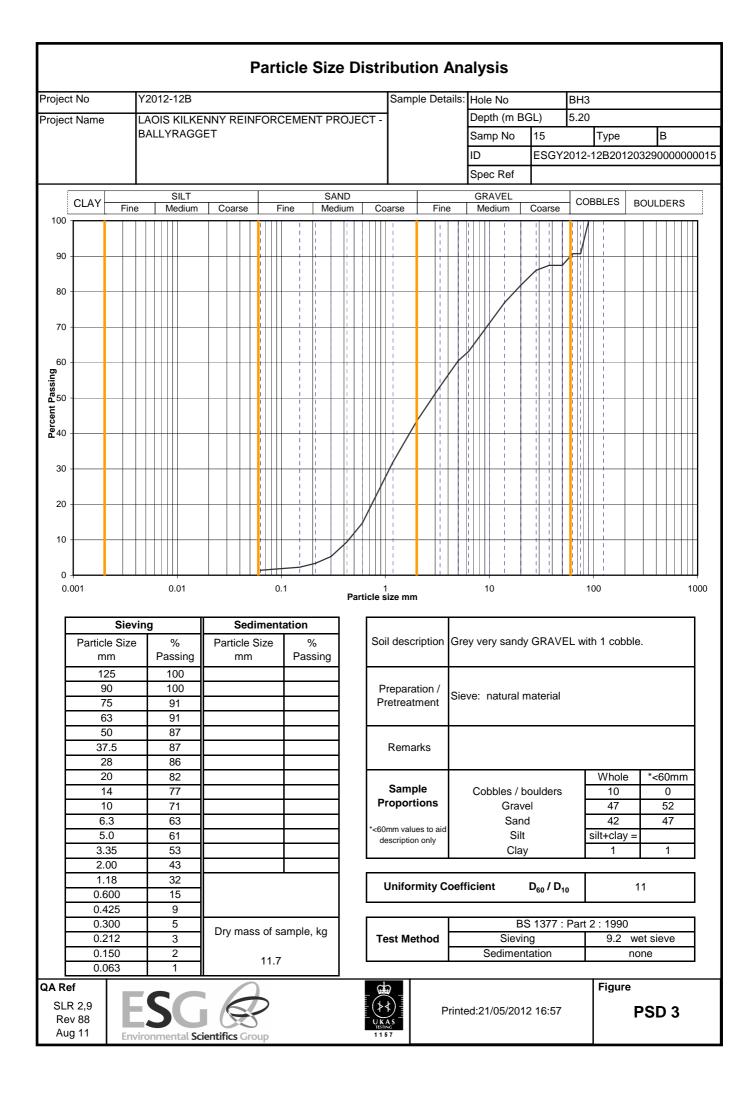
LAOIS KILKENNY

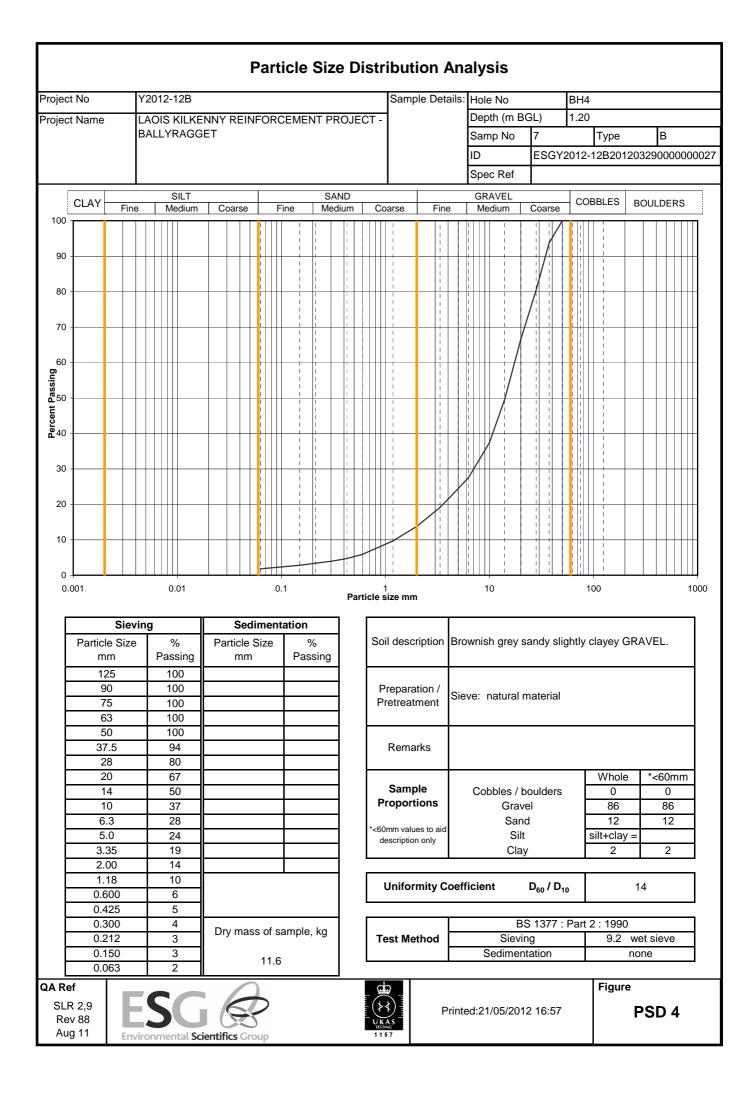
Environmental Scientifics Group

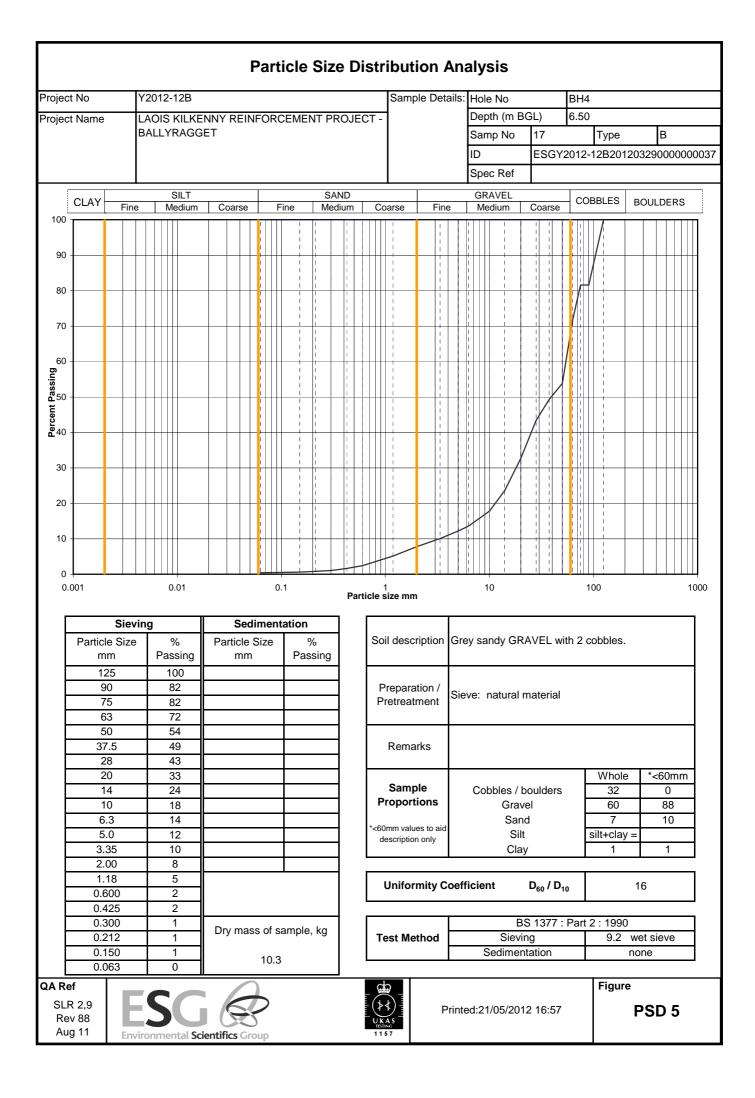
Details of Report Contents

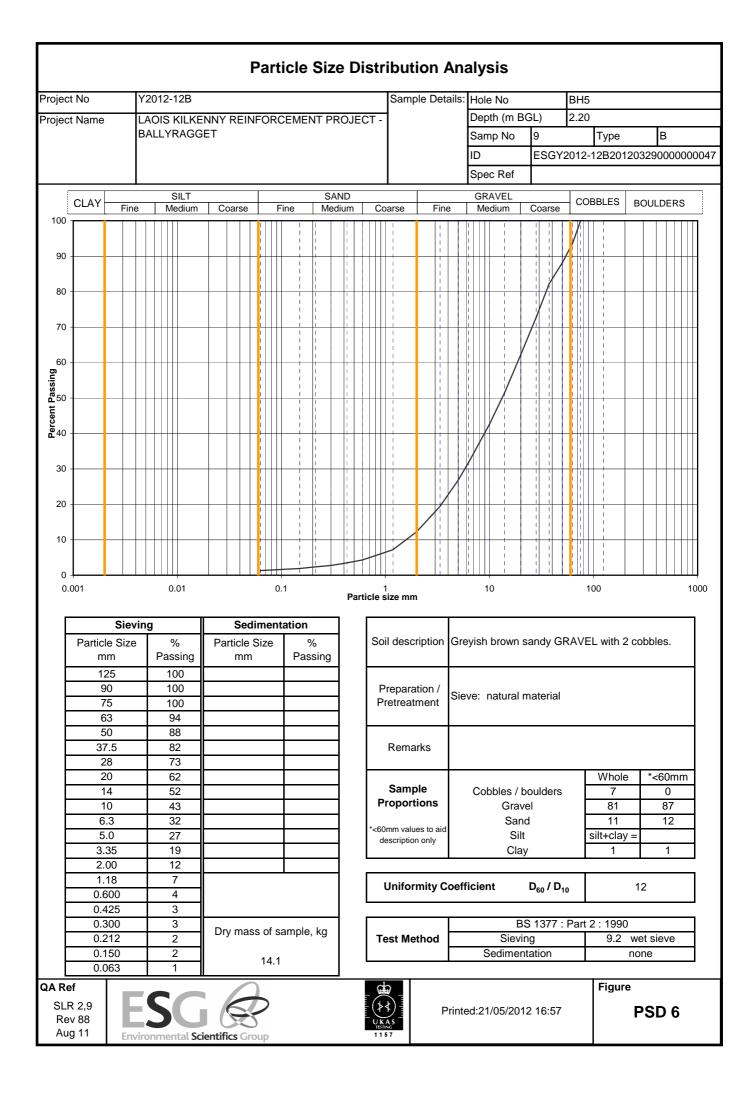

Tests in the following list marked * are not UKAS accredited

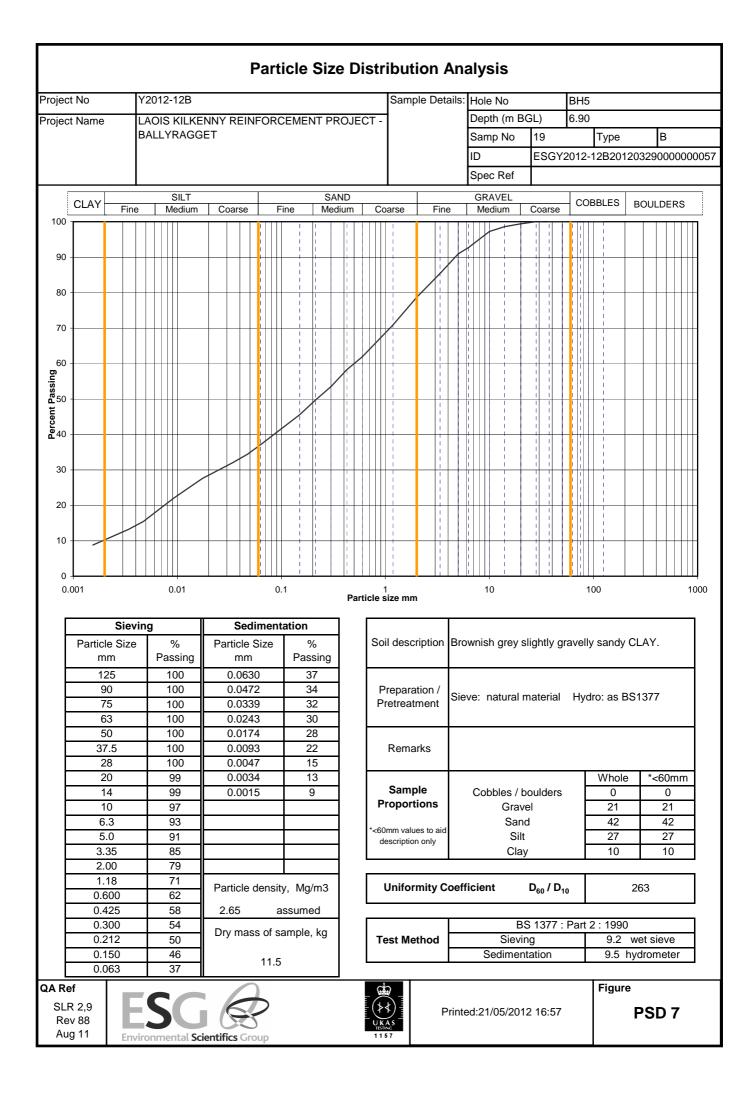

ITEM	Sheet Nos	Comments
Covering letter	page(s) 1 to 1	
Contents	page(s) 1 to 1	

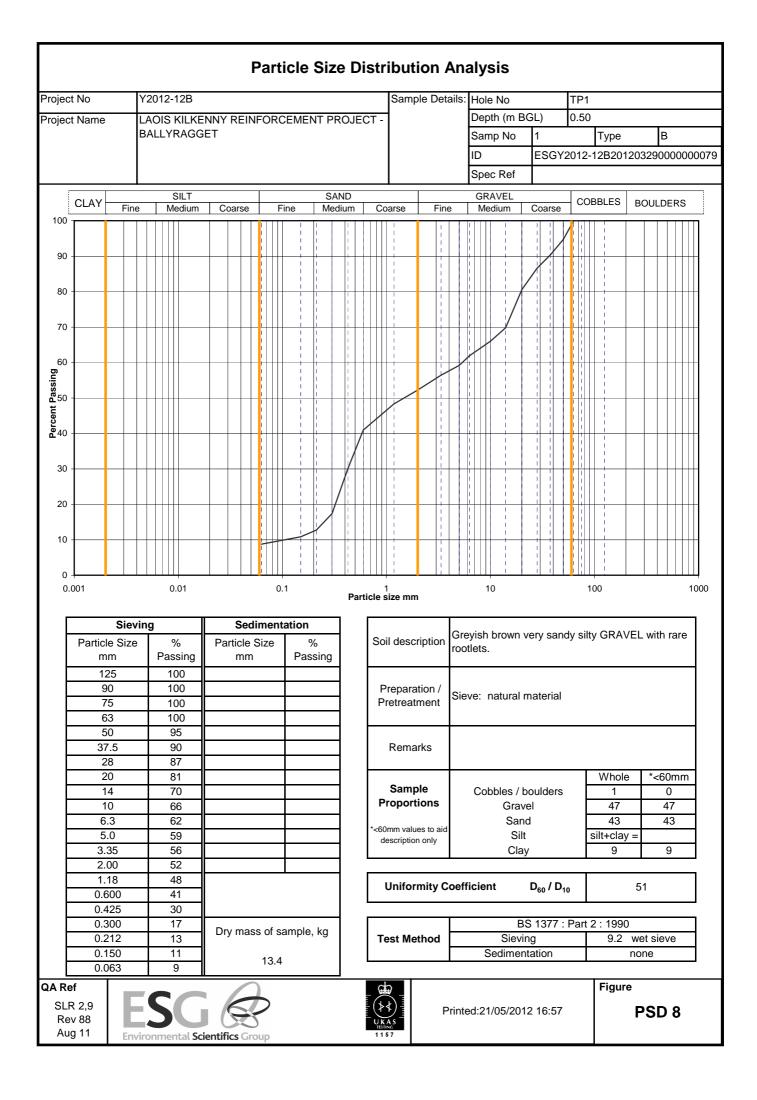

SOIL TESTS Index Properties - Summary of Results INDX 1 to 1 Chemical Tests - Summary of Results CHEM 1 to 1 Particle Size Distribution Analyses PSD 1 to 18 END OF REPORT Total number of pages in this report 22 3 (9

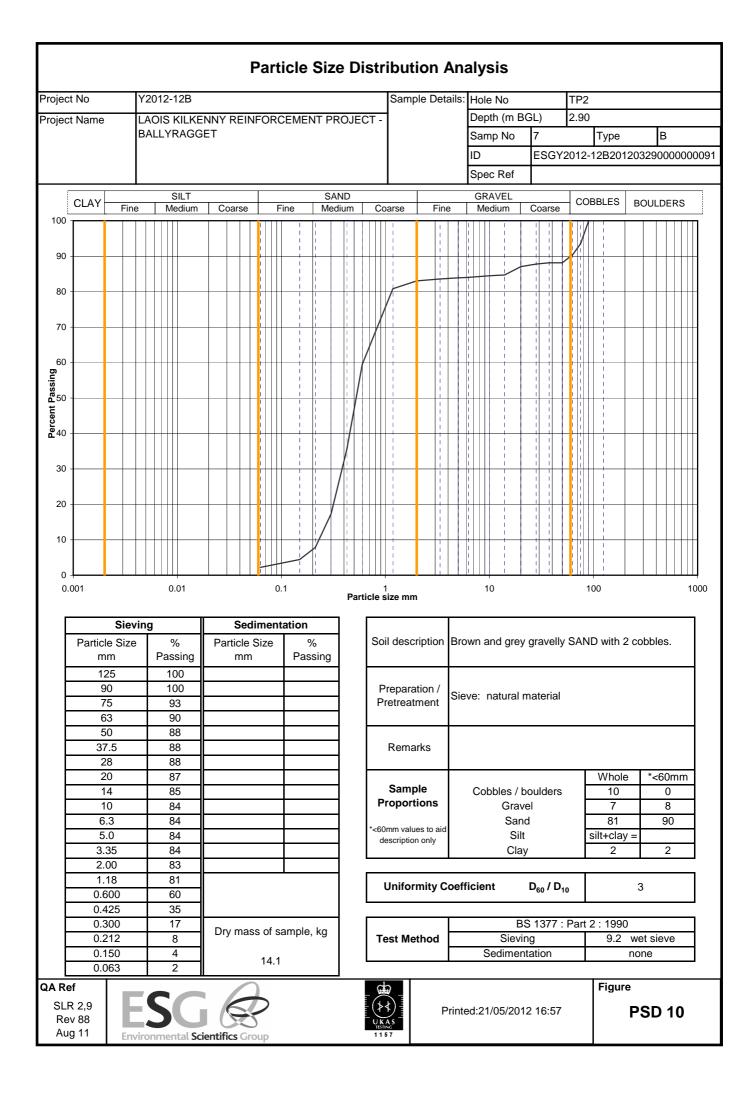

				C	HEMICAL T	EST	ΓS -	SL	JM	MA	RY	OF	RE	SULTS	6				
Project No	Project	t Name	9																
Y2012-12B	LAOIS	KILKE	ENNY	REINF	FORCEMENT PROJE	ECT - I	BALLY	(RAG	GET										
		Sam	nple			Org	LOI	pН		Sulph	ate as S	O ₄	SD	1 options	CO ₂	Chlori	de, Cl	<2	
Hole No.	No.	Dept	th (m)	type	Soil Description				Preparation/test *	2:1 water sol.	ground water	acid sol.	тs	Mg mg/L NO ₃ mg/L NH ₄		water sol.	acid sol.	mm	Remarks
		from	to			%	%		Prepa	g/L	g/L	%	%		%	%	%	%	
BH3	6	0.80	1.20	В	Brown slightly sandy gravelly CLAY.			7.7	1+3	0.02								41	
BH4	7	1.20	1.70	В	Brownish grey sandy slightly clayey GRAVEL.			8.5	1+3	0.18								14	
BH5	6	0.70	1.20	В	Greyish brown slightly sandy gravelly CLAY with one cobble.			7.9	1+3	0.33								46	
TP2	5	1.90	2.00	В	Brown very sandy slightly clayey GRAVEL.			8.2	1+3	0.03								50	
TP3	3	1.90	2.00	В	Brown gravelly SAND with one cobble.			8.1	1+3	0.02								33	
TP4	4	1.90	2.00	D	Brownish grey slightly gravelly slightly clayey SAND.			8.2	1+3	0.06								89	
TP7	3	1.50	1.60	в	Greyish brown very sandy slightly organic GRAVEL with 2 cobbles.			8.2	1+3	0.07								35	
BS 1377 : definitive Org Organic r		ent			* Sulphate tests prepara1. BS 1377:Part 3:1990:cl				_447 -	1 wate	r soluble s	sulphate		BRE S		oigest SD ulphur to			
LOI Mass loss	LOIMass loss on ignition at 440°C2. BS 1377:Part 3:1990:clause 5.45. TRL447 - 2 aCO2Carbonate content (rapid titration)3. BS 1377:Part 3:1990:clause 5.56. BR279 - group							2 acid	soluble su	Iphate		Mg NO3	Soluble		ium to E	3R279, c	olorimetric		
Cl Chloride					< 2mm material passing 2							·		$\rm NH_4$	qualitat			I	
QA Ref					Δ													Tab	le
SLR 3 Rev 95 Aug 11		S		ientifi	ics Group								Prir	nted:21/05/	2012 1	6:56		С	HEM 1

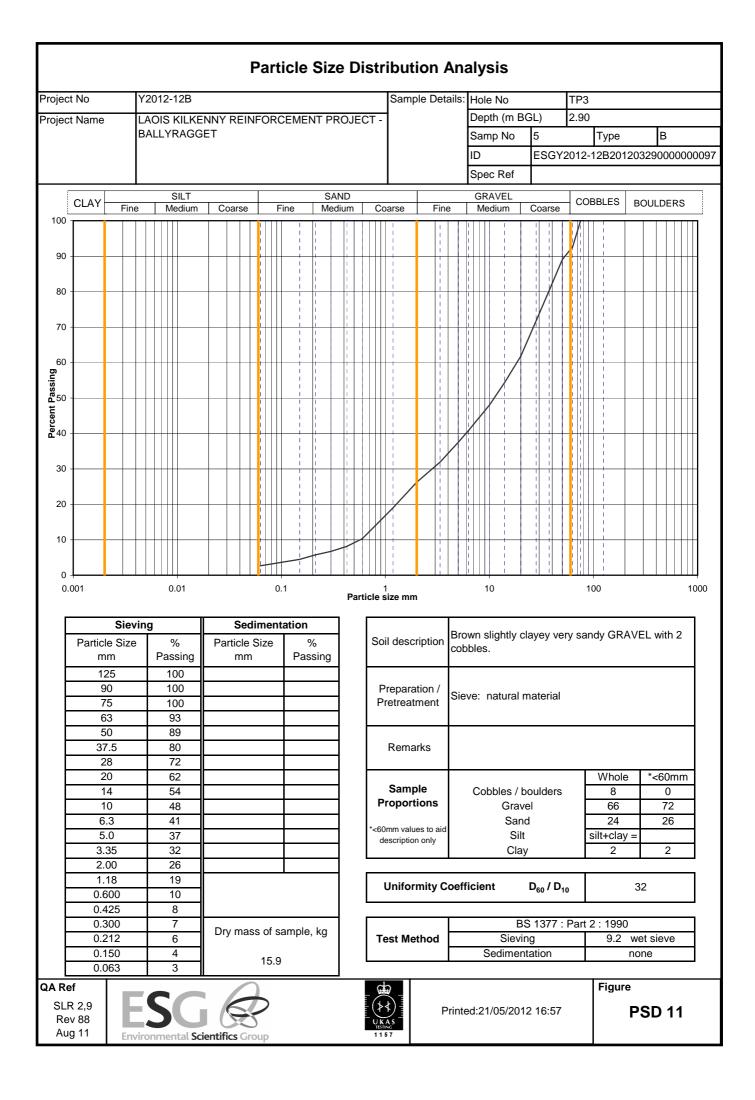

			IND	EX	PROPERTIES - SU	JMN	ЛАF	RY (OF	RES	SUL	TS		
Project No	Project	Name												
Y2012-12B	LAOIS P	KILKENI	NY REI	NFOF	CEMENT PROJECT - BALLYRAG	GET								
		Samp	ole			р	p_{d}	W	< 425	W_{L}	W _P	I _P	p _s	
Hole No.	No.		h (m)	type	Soil Description	-			µm sieve					Remarks
TP2	2	from 0.50	to 0.60	D	Brown slightly sandy slightly gravelly CLAY.	Mg	y/m ³	% 11	% 56 s	% 27 a	% 17	10	Mg/m ³	
TP6	2	0.50	0.60	D	Brown slightly sandy slightly gravelly CLAY.			12	59 s	27 a	17	9		
	2	0.50	0.00	D				12	55 3	20 8	17	5		
General notes:	All above t	ests carrie	ed out to E	3S1377	: 1990 unless annotated otherwise. See indiv	idual tes	t reports	for furt	her deta	ils.				
Key :	p	bulk dens			W _L Liquid limit	W_{P}	Plastic			<425un				p_s particle density
	р _d	dry densi			a 4 point cone test		non - pl			n from				-g = gas jar
QA Ref SLR 1 Rev 91		moisture	content	6	b 1 point cone test	IP	Plasticit		Printec	s siev 1:21/0				-p = small pyknometer Table INDX 1
Mar 12	Enviro	onmenta	al Scien	tifics	Group									

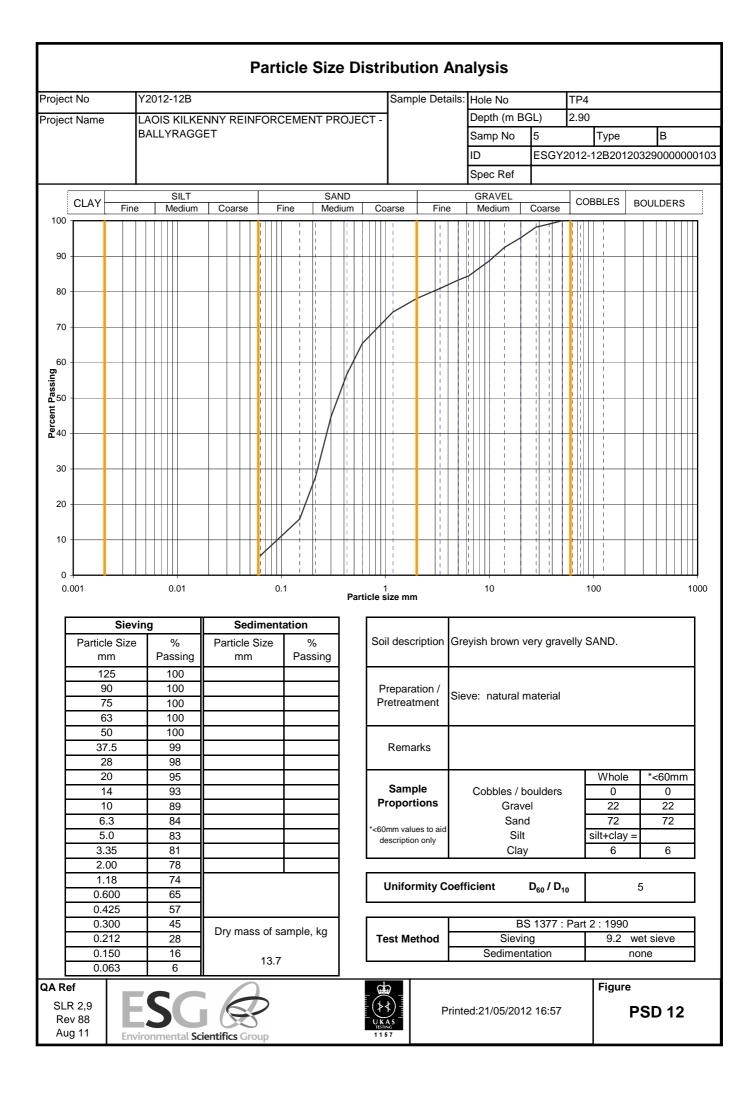


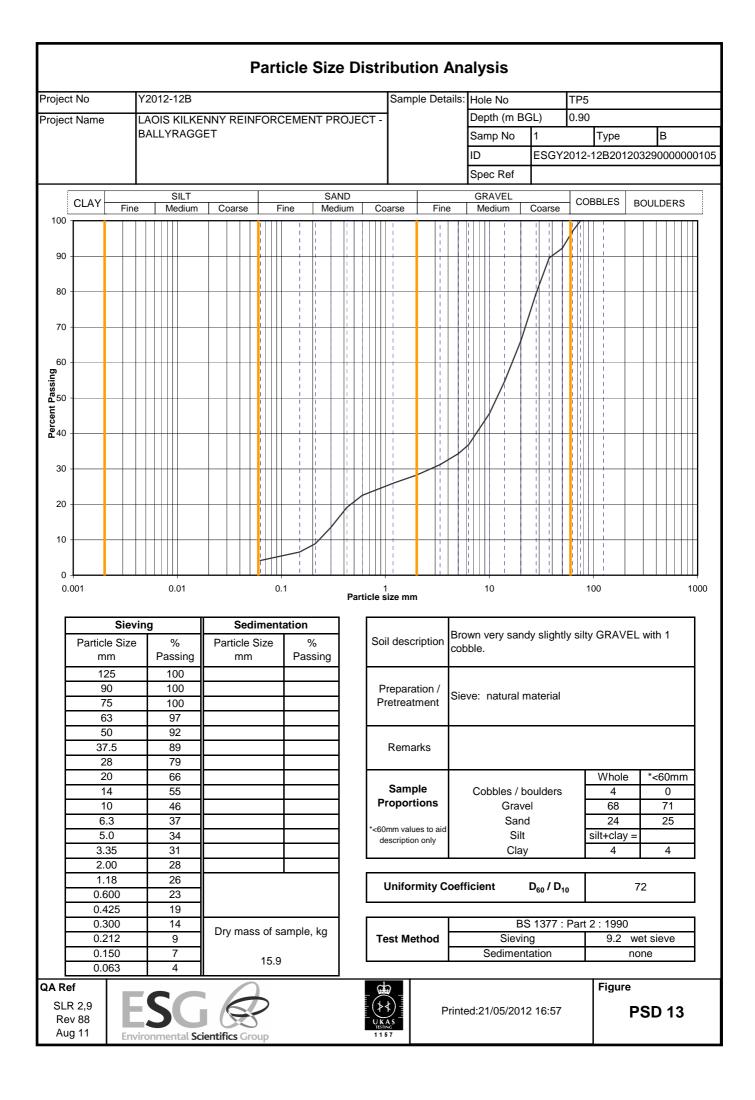


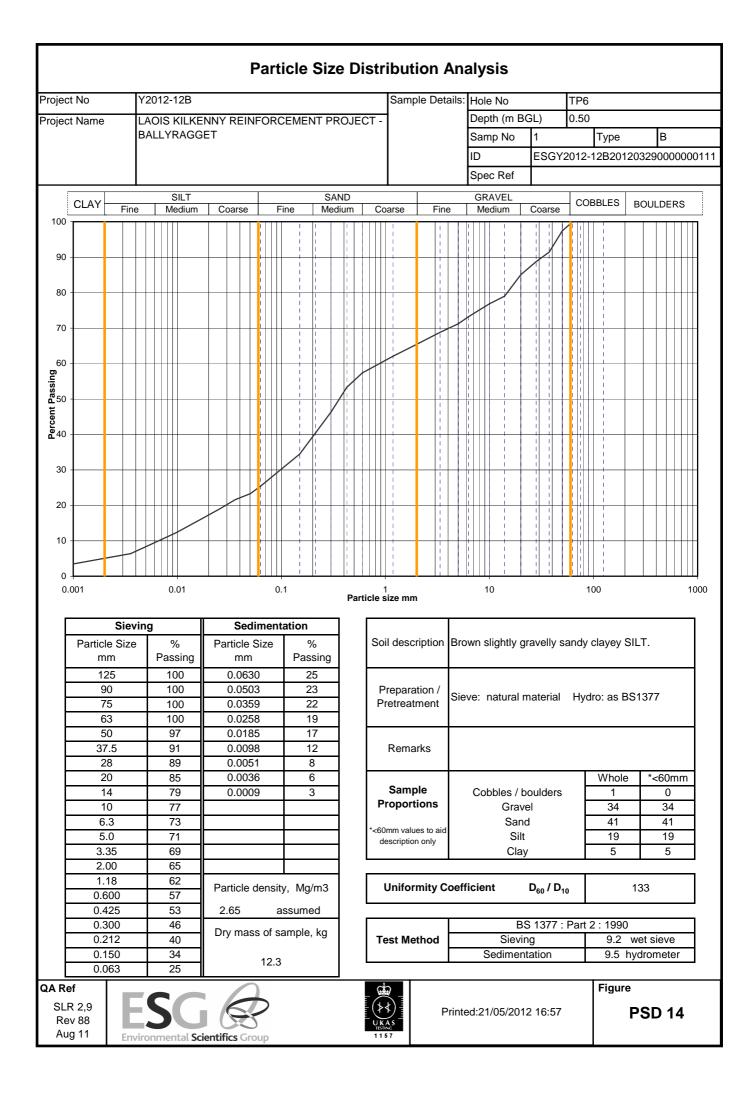


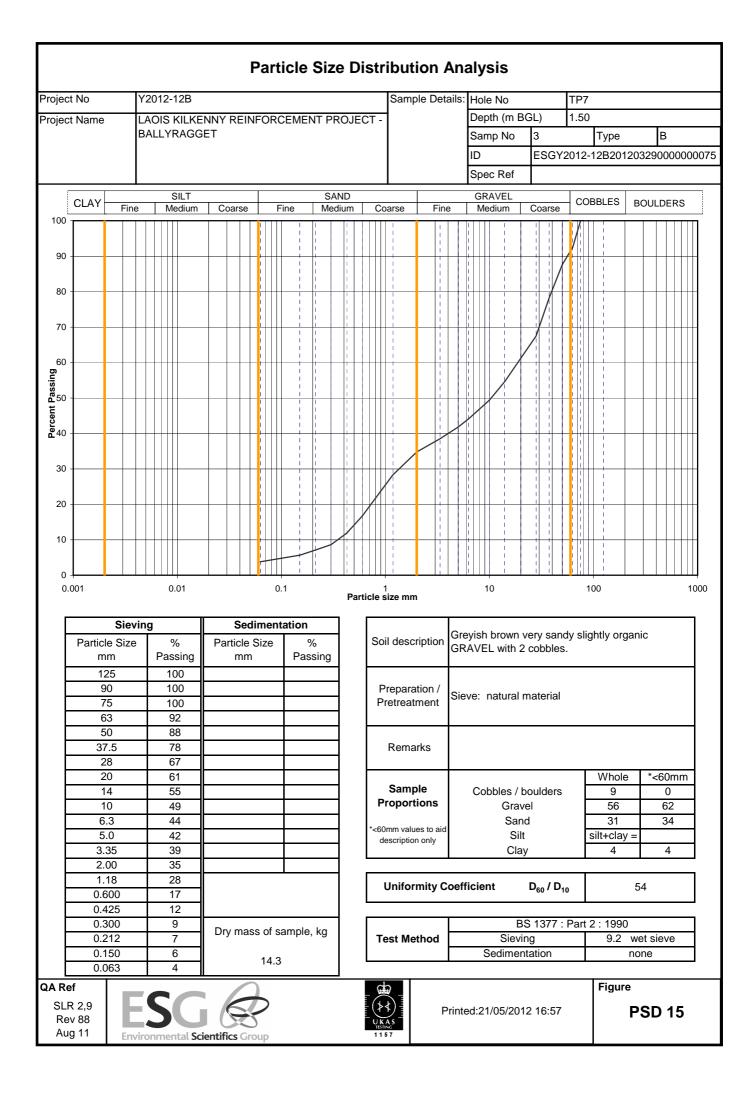


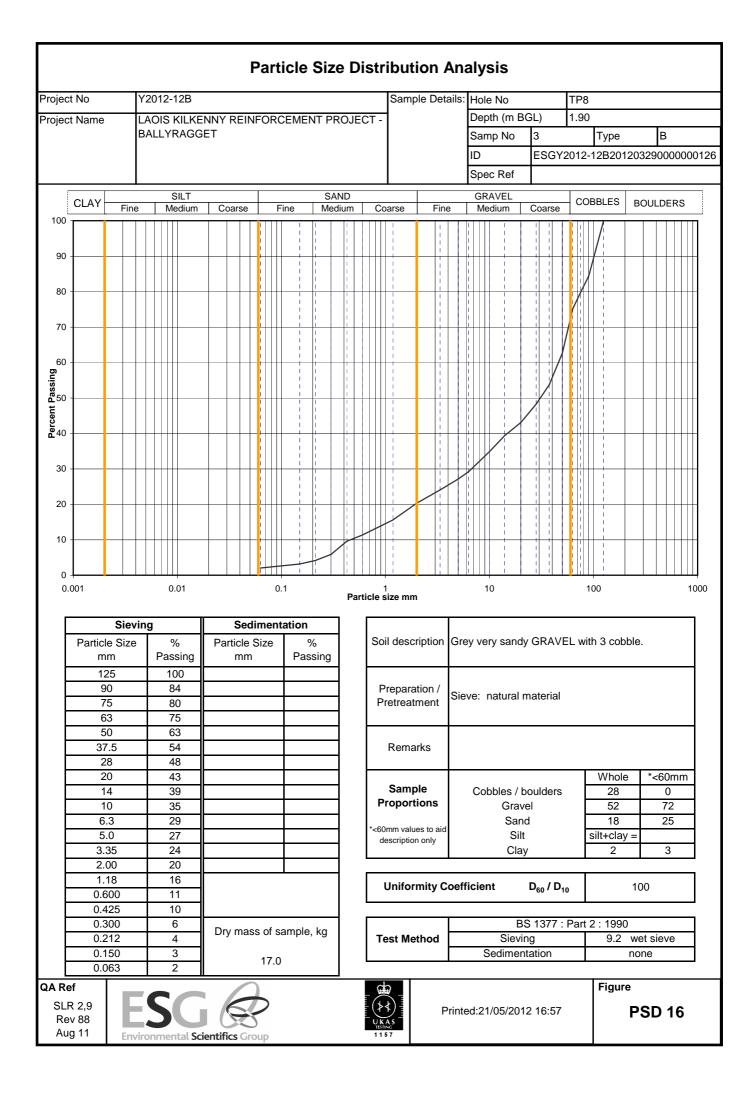


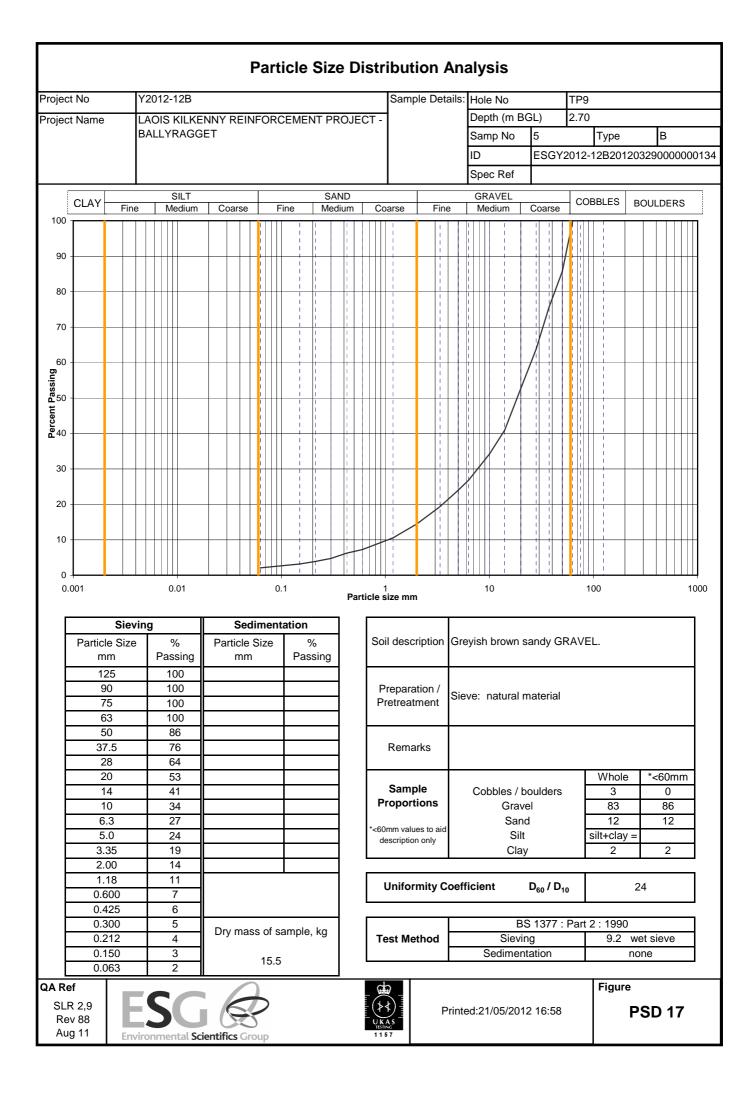


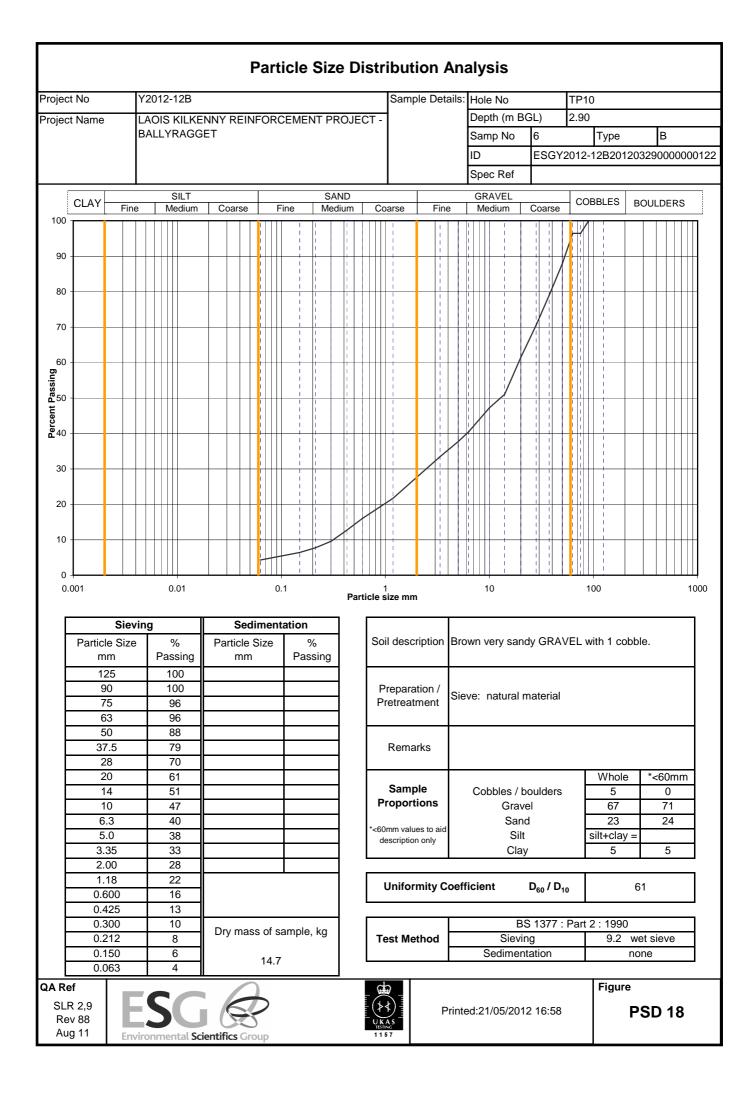












ENCLOSURE E GEOENVIRONMENTAL LABORATORY TEST RESULTS

ESG Scientifics Report

Scientifics Report No EFS/123380

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/123380 (Ver. 1)

ESG Geoenvironmental Consulting Carowswood Castlemartyr Co Cork Ireland

Site: Laois Reinforcement Eirgrid

The 2 samples described in this report were registered for analysis by ESG on 11-Apr-2012. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 24-Apr-2012

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results Table of PAH (MS-SIM) (80) Results Table of PCB Congener Results GC-FID Chromatograms Table of WAC Analysis Results Analytical and Deviating Sample Overview Table of Method Descriptions Table of Report Notes

On behalf of ESG : Andrew Timms

Huin

Operations Manager

Date of Issue: 24-Apr-2012

Tests marked '^' have been subcontracted to another laboratory.

ESG accepts no responsibility for any sampling not carried out by our personnel.

Method Codes TMS THPICUS THPICUS TWINDUS TWINDUS TURINS 0 BTEXINS 0 B		Units	: %	mg/kg	mg/kg	mg/kg	% M/M	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	mg/kg	
UKAS Accredited : Yes				TPHFIDUS	TPHFIDUS			BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	PAHMŠUS	
Log Lient Sample Description Total Massa H PCP-7 Congeners Analysis Feb Feb Feb Feb An An PA (i) ally cons 1 Client Sample Description 10.0 <10 70		Method Reporting Limits	: 0.2													
I I		UKAS Accredited	: Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Image: Section of the section of t	Cli	ient Sample Description	Tot.Moisture @ 105C	MRO by GCFID (AR)	TPH by GCFID (AR)	PCB-7 Congeners Analysis	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	MTBE	Xylenes	m/p Xylenes	o Xylene	PAH (16) by GCMS	
Image: Section of the section of th																
Contact Mr A Jaworski Date Printed	Y2	2012-12B Ballyræ**^o4TP1	10.9	<10	10	Req	0.68	<10	<10	<10	<20	<20	<10	<10	Req	
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed																
Contact Mr A Jaworski Date Printed								1	1							
Date Printed	5	G				1	1	1	1	1				1		1
	ne	ental Scientifics Group	Contac	t	Mr A Jav	vorski										
Report Number EFS/12338																
												-			EFS/123380	
Table Number												Table Nu	mber		1	

Polycyclic Aromatic Hydrocarbons GC/MS (SIM)

Customer and Site Details:	ESG Geoenvironmental (ESG Geoenvironmental Consulting: LæðisÁSā{\^} }^^ÁÜ^ð -ĂÚ'[b*&c							
Sample Details:	Y2012-12B Ballyra**^t T	P1 Job Number:	S12_3380						
LIMS ID Number:	CL1260666	Date Booked in:	11-Apr-12						
QC Batch Number:	120363	Date Extracted:	19-Apr-12						
Quantitation File:	Initial Calibration	Date Analysed:	20-Apr-12						
Directory:	1912MS5.PAH\	Matrix:	Soil						
Dilution:	1.0	Ext Method:	Ultrasonic						

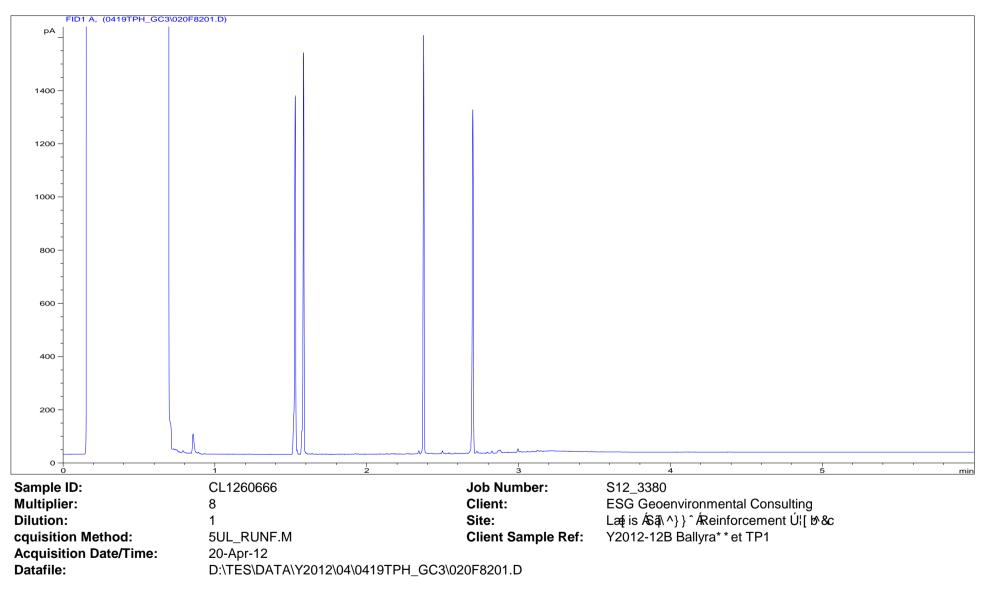
UKAS accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit
		(min)	mg/kg	
Naphthalene	91-20-3	-	< 0.08	-
Acenaphthylene	208-96-8	-	< 0.08	-
Acenaphthene	83-32-9	-	< 0.08	-
Fluorene	86-73-7	-	< 0.08	-
Phenanthrene	85-01-8	-	< 0.08	-
Anthracene	120-12-7	-	< 0.08	-
Fluoranthene	206-44-0	-	< 0.08	-
Pyrene	129-00-0	-	< 0.08	-
Benzo[a]anthracene	56-55-3	-	< 0.08	-
Chrysene	218-01-9	-	< 0.08	-
Benzo[b]fluoranthene	205-99-2	-	< 0.08	-
Benzo[k]fluoranthene	207-08-9	-	< 0.08	-
Benzo[a]pyrene	50-32-8	-	< 0.08	-
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.08	_
Dibenzo[a,h]anthracene	53-70-3	-	< 0.08	_
Benzo[g,h,i]perylene	191-24-2	-	< 0.08	-
Total (USEPA16) PAHs	-	-	< 1.28	-

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	99
Acenaphthene-d10	105
Phenanthrene-d10	106
Chrysene-d12	114
Perylene-d12	119

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	97
Terphenyl-d14	102


Concentrations are reported on a wet weight basis.

The Total PAH result is the sum of non-rounded individual PAH results and therefore may differ to the sum of the rounded individual PAH results printed above. By convention, where any one or more result is a "less than", the total is expressed as a "less than" and includes the "less than" concentration within the total.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method:	ESG Geoenvironmental Consulting: L S12_3380 120106 0419BPCB.GC8 Ultrasonic	.æoisSaî∖^}}^ÁRe	einfoĂۦ[b∕&c∵∵		Aatrix: Date Booked Date Extracte Date Analyse	ed:	8 11-Apr-12 19-Apr-12 20-Apr-12	SOIL
		* This sample	e data is not U	KAS accredite	ed.			
				Con	centration,	(µg/kg)		
Sample ID	Customer ID	PCB28	PCB52	PCB101	PCB118	PCB153	PCB138	PCB180
* C								
* CL1260666	Y2012-12B Ballyra**^t TP1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Petroleum Hydrocarbons (C8 to C40) by GC/FID

Where individual results are flagged see report notes for status.

WASTE ACCEPTANCE CRITERIA TESTING BSEN 12457/2

Client	ESC Coconvironmental	Conculting			Leaching Data					
Client	ESG Geoenvironmental	Consulting		Weight of sample (kg)	0.090					
Contact	Mr A Jaworski			Moisture content @ 105°C (%)	10.9					
Contact	IVII A JAWOISKI				Equivalent Weight based on drying at 105 ${ m C}$ (kg)	0.101				
Site	Laois Sā\^} ^ ÁReinforce	mont l ^í l! [kà 8c		Volume of water required to carry out 10:1 stage (litres)						
Sile	Lauis Sa(^}} Akeinioice		,							
Samp	ble Description	Report No	Sample No	Issue Date						
Y2012-1	2B Ballyra* * et TP1	s12 3380	CL/126066	6 24-Apr-12						
12012 12		312_0000								

				Landfill Waste	Acceptance Crite	ria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.68	3	5	6
	LOI450	Loss on Ignition (%)				10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.05	6		
Ν	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.035	1		
U	TPHFIDUS	Mineral Oil (mg/kg)	11	500		
	PAHMSUS	PAH Sum of 17 (mg/kg)		100		
	PHSOIL	pH (pH units)			>6	
	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7			To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/2 @ L/S 10 litre kg-1 mg/kg (dry weight)				
Ac	Me		mg/l except ⁰⁰	mg/kg (dry weight)					
U	WSLM3	pH (pH units) ⁰⁰	9.5	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) ⁰⁰	176						
U	ICPMSW	Arsenic	0.003	0.03	0.5	2	25		
Ν	ICPWATVAR	Barium	0.37	3.7	20	100	300		
U	ICPMSW	Cadmium	<0.0001	<0.001	0.04	1	5		
U	ICPMSW	Chromium	0.011	0.11	0.5	10	70		
U	ICPMSW	Copper	0.017	0.17	2	50	100		
U	ICPMSW	Mercury	<0.0001	<0.001	0.01	0.2	2		
U	ICPMSW	Molybdenum	0.005	0.05	0.5	10	30		
U	ICPMSW	Nickel	<0.001	<0.01	0.4	10	40		
U	ICPMSW	Lead	<0.001	<0.01	0.5	10	50		
U	ICPMSW	Antimony	0.009	0.09	0.06	0.7	5		
U	ICPMSW	Selenium	0.003	0.03	0.1	0.5	7		
U	ICPMSW	Zinc	0.052	0.52	4	50	200		
U	KONENS	Chloride	12	120	800	15000	25000		
U	ISEF	Fluoride	0.6	6	10	150	500		
U	ICPWATVAR	Sulphate as SO4	19	190	1000	20000	50000		
	WSLM27	Total Dissolved Solids			4000	60000	100000		
	SFAPI	Phenol Index			1				
Ν	WSLM13	Dissolved Organic Carbon	12	120	500	800	1000		

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

ESG Environmental Chemistry **Analytical and Deviating Sample Overview**

SOIL Analysis

ESG Geoenvironmental Consulting Customer LUc]g'?] YbbmReinforcement Dfc **YWh** Site **Report No** S123380

Report Due 23-Apr-2012

Date Logged 11-Apr-2012

Consignment No S28307

		MethodID	BTEXHSA		CEN Leachate	CustServ	PAHMSUS	PCBUSECDAR	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)C	Report B	PAH (16) by GCMS	PCB-7 Congeners Analysis	Tot.Moisture @ 105C	MRO by GCFID (AR)	TPH by GCFID (AR)	Total Organic Carbon
	Accredited	to ISO17025										
01/4000000			✓	✓			✓		✓	✓	✓	
CL/1260666	Y2012-12B Ballyra**^cTP1	D										

Deviating Sample Key Note: For analysis where the Report Due date is greater than 7 days (PAH, Pesticides, PCB, Phenols, Herbicides) or 2 days (BOD) The sample was received in an inappropriate container for this analysis В after the sampling date, although we will do our utmost to prioritise The sample was received without the correct preservation for this analysis С your samples, they may become deviant whilst being processed in Headspace present in the sample container D the Laboratory. The sampling date was not supplied so holding time may be compromised - applicable to all analysis Е Sample processing did not commence within the appropriate holding time Requested Analysis Key In this instance, please contact the Laboratory immediately should Analysis Required you wish to discuss how you would like us to proceed. If you do Analysis dependant upon trigger result - Note: due date may be affected if triggered not respond within 24 hours, we will proceed as originally No analysis scheduled requested. Analysis Subcontracted Where individual results are flagged see report notes for status. The integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes
			(BTEX) by Headspace GCFID
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by
			hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB)
			congeners/aroclors by hexane/acetone extraction followed by
			GCECD detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on
			oven drying gravimetric analysis
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil
			with GCFID detection.
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid
			digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using
			ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective
			Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and
			dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical
			conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on an air dried basis
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample NADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

- I.S(g) Insufficient sample to re-analyse, results for guidance only
- Intf Unable to analyse due to interferences
- N.D Not determined
- N.Det Not detected

Req Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result
- **‡** MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

END OF REPORT

Where individual results are flagged see report notes for status.

ENCLOSURE F PHOTOGRAPHS

Trial Pits

TP1 to 10

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET	Trial pit
Scale 1 : 50 000	Project No	Y2012-12B	TP2
	Carried out for	EirGrid	Sheet 1 of 1

Notes

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET	I rial pit
Scale 1 : 50 000	Project No	Y2012-12B	TP4
	Carried out for	EirGrid	Sheet 1 of 1

Trial Pit Spoil

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET	Trial pit
Scale 1 : 50 000	Project No	Y2012-12B	TP5
	Carried out for	EirGrid	Sheet 1 of 1

Trial Pit Side/Base

Trial Pit Spoil

 Notes
 Project
 LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET
 Trial pit

 Scale 1 : 50 000
 Project No
 Y2012-12B
 TP6

 Carried out for
 EirGrid
 Sheet 1 of 1

Trial Pit Spoil

Trial Pit Side/Base

Notes	Project	LAOIS KILKENNY REINFORCEMENT PROJECT - BALLYRAGGET	Trial pit
Scale 1 : 50 000	Project No	Y2012-12B	TP7
	Carried out for	EirGrid	Sheet 1 of 1

Notes

Sheet 1 of 1

Project No Carried out for

EirGrid

Notes

Carried out for

EirGrid

les	FIOJECI	LAOIS KILKENINT REINFORGEIVIENT PROJECT - DALLTRAGGET	r nai pit
ale 1 : 50 000	Project No	Y2012-12B	TP10
	Carried out for	EirGrid	Sheet 1 of 1

Sca

ENCLOSURE G

SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT

Traynor Environmental Ltd – Report No 12.050 TE

	Traynor
TU	Environmental Ltd.

SOIL CHARACTERISATION AND SITE SUITABILITY ASSESSMENT REPORT

TE REF: 12.050 TE

IN ACCORDANCE WITH EPA CODE OF PRACTICE WASTEWATER TREATMENT AND DISPOSAL SYSTEMS SERVING SINGLE HOUSES 2009

Traynor Environmental Ltd Belturbet Business Park, Creeny, Belturbet Co. Cavan Tel: +353 49 9522236 Fax: +353 49 9522808 Web: <u>www.traynorenvironmental.com</u>

SITE CHARACTERISATION FORM FOR AN ON-SITE WASTEWATER TREATMENT SYSTEM

CONTENTS

- 1.0 GENERAL DETAILS
- 2.0 DESK STUDY
- 3.0 ON SITE ASSESSMENT
 - 3.1 VISUAL ASSESSMENT
 - 3.2 TRIAL HOLE ASSESSMENT
 - 3.3 PERCOLATION ("T" Test for Deep Subsoils and Water Table)

Step 1 Test Hole Preparation

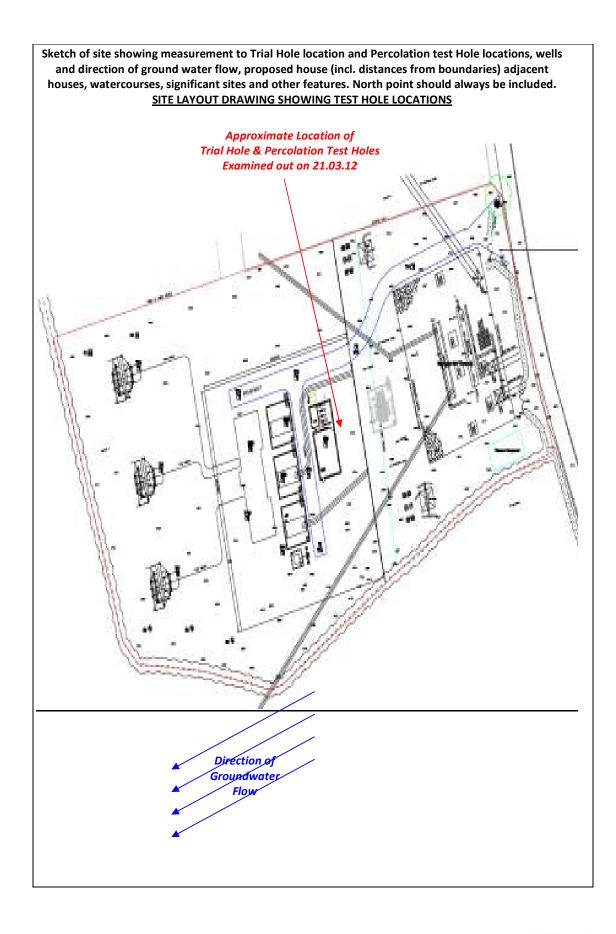
Step 2 Pre-Soaking Test Holes

Step 3 Measuring T₁₀₀

Step 4 Standard Method (where $T_{100} \leq 210$ min)

- 4.0 CONCLUSIONS OF SITE CHARACTERISATION
- 5.0 RECOMMENDATION
- 6.0 TREATMENT SYSTEM DESIGN DETAILS
- 7.0 SITE ASSESSORS DETAILS
- 8.0 PHOTOGRAPHS OF THE SITE
- 9.0 EPA/FAS CERTIFICATE
- 10.0 INSURANCE DETAILS.

1.0 GENERAL DETAILS (From planning application)									
Company			EirGrid						
Ade	Address			Site Location and Townland					
c/o Geotech Environmen Ca	rGrid Specialists Ltd part of ntal Scientifics Group arewswood, astlemartyr, ounty Cork, Ireland	c		Lo	EirGrid Laois-Kilkenny Reinforcement Project Ballyragget 110KV Station Ballyragget Co Kilkenny				
Telephone Number	r N/A		Fax Nu	mber	N/A]
Email	N//	4				1			
Maximum No. of En Proposed Water Su		7	ouble Bedrooms N/A No. of Single Bedrooms Ite Well/Borehole Group Well/Borehole						I/A
		2.0	DESK S	STUDY					
Soil Type Aquifer Category:	Soil Association 34. Minimal Grey Brown Podzolics - 70% Gleys - 20% Brown Earth - 10%								
Aquiler Category.	Regionally Impor	tant	Rkd	Locally	Important		Poor		
Vulnerability Ext	r Hg ✓	Moderate		Low	High to Low		Unkn	own	
Bedrock Type		DPBL –	Dinantiar	n Pure Bea	ded Limestones				
]	2				
	up Scheme Water Sup	ply within		[-		Scheme		()
Groundwater Protec			No	Source	Protection Area	SI	N/A	SO N,	/A
Groundwater Protec Presence of Significa	-	/ /	R2 ¹						
(Archaeological, natural and historical): None identified or evident on the site.									
Past experience in the area: Variable percolation characteristics in the locality Comments (Integrate the information above in order to comment on: the potential suitability of the site, potential									
targets at risk, and/o R2 ¹ : Acceptable subje accordance with EPA site and if there exist the land area), and Groundwater as a re percolation rate is to not adhered to. Gro response and the aqu depths required are r	e the information abov r any potential site res ect to normal good pra (2009). Site may be s ts suitable percolation as the area is mapped source will be at risk to rapid. Older wells in pundwater and wells uifer type, the site is po met on the site, if the r ly important bedrock of	strictions). actice (i.e. , uitable for A As the so d as High if the min the area are therep otentially so minimum so	System se r discharg oil type ir Vulnerab imum de may also fore the suitable f separation	election, c ge to grou n the area nility, surfo oths requ be at rish main tar <u>o</u> or a conve n distance	onstruction, oper nd, if the minimu is Minimal Grey ace water may b ired are not achi c, if the minimum gets, following the entional septic ta es can be met, an	ation a um depu Brown e at ris eved or separd he desk nk syste d if the	nd main ths are r Podzoli sk aroun n the situ ation dis c study. em if the percola	tenance met on t. cs (70% d the sit e, or if t. tances a Given t. e minimu tion rate	in he of te. he ne he um e is



3.0 ON-SITE ASSESSMENT

3.1 Visual Assessment

		3.1 Visual Assessment							
Landscape Position			Rel	atively Flat		-			
Slope Stee	p <1:5	Shallow	1.5 to 1.20	F	Relatively Flat	✓			
Surface features with	in a minimu	m of 250 metres (Distances to fea	atures should be no	oted in metres)				
Houses			-		Southeast of the prop	osed			
		percolation area	a (ppa). Graveya	ard located North o	of the ppa.				
Existing Land	Jses	Agricultural Gra	izing						
Vegetation Indi	cators	Grass is the pre-dominant vegetation on the site. The absence of rushes could indicate adequate percolation characteristics in the area.							
Groundwater Flow	Directions	Western Direction.							
Ground Condi	tion	Dry and firm underfoot in the ppa which could indicate good percold characteristics of the subsoil.							
Site Boundar	ies	Hedge, trees and road located on the Eastern boundary. Hedge of located on the Southern boundary. Post and wire fence and wall lo the Northern boundary. Hedge and trees located on the Western bou							
Roads		Road (R 432) is	located approxi	mately >100m Eas	t of the ppa.				
Outcrops (Bedroc subsoil)	and/or	None identified	or evident in the	vident in the vicinity.					
Surface water po	onding	-	veather condition	face water ponding when examined on 21.03.12. It must ther conditions prior to the site assessment taking place spells.					
Drainage Dito	hes	None identified	or evident in the	e vicinity					
Beaches/Shellfish	None in the v	dentified or eviden vicinity.	nt Ar	eas/Wetlands	None identified or evident in the vicinit	y.			
Karst Features	None in the v	dentified or eviden vicinity.	^{nt} Wate	rcourse/streams	Nearest watercourse located approximate >100m West of the p	ely			
Lakes	in the v	,	5	Springs/Wells None identified or evident in the vicinity					
treatment system on	isk, the suite the site.	ability of the site to	o treat the wast	ewater and the loo	cation of the proposed				
*Percolation area is ideally located within the confines of the site. The proposed percolation area should be a minimum of 10m from a dwelling, 10m from a watercourse, 30m down gradient of a well/spring, 20m from any other percolation area, 3m from a boundary and 4m from a roadway									

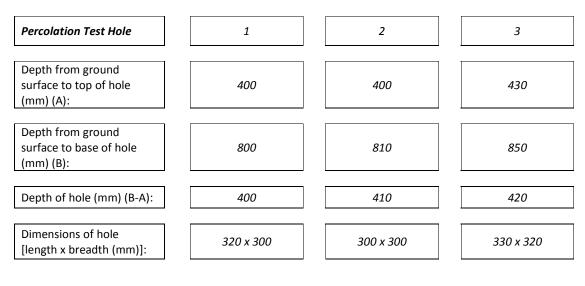
3.2 Trial Hole

Depth o	of Trial Hole	3.	0m					
Depth from Ground Surface to bedrock (m) if Present		to	None encountered	Depth fro Water 1		None encountered		
	Depth of water	ingress		None encountered	Rock		None encountered	
Date a	nd Time of Exca	vation	18.03.12	2 11.00		nd Time of nination	21.03	12 09.20
	Depth of P & T Test	Tex	Subsoil cture fication	Plasticity and Dilatancy	Soil Structure	Density Compactnes s	Colour	Preferential Flowpaths
0.1m 0.2m 0.3m 0.4m		Silt,	<i>(CLAY</i>	Ribbons 20,20,30mm 1,3,1 Threads	Blocky	Low	Brown	None
0.5m 0.6m 0.7m 0.8m	Depth of T Test	Gravelly Sand		Ribbons 10mm 2 Threads	Blocky	Low	Brown - Grey	
0.9m 1.0m 1.1m 1.2m 1.3m 1.4m 1.5m 1.6m 1.7m 1.6m 1.7m 1.8m 2.0m 2.1m 2.1m 2.2m 2.3m 2.4m 2.5m		Gravel		Ribbons 5mm 1Threads	Blocky	Low	Grey	
Αссоι	Evaluation: Weather conditions: Dry and Bright – Weather generally wet prior to testing. According To The Flowchart For Describing Subsoil's based on BS5930:1999, the subsoil is best described as a Gravelly Sand *Excellent percolation characteristics of the subsoil exhibited in the trial hole.							

Likely T Value

< 5.00 min /25mm *Note: Depth of percolation test holes should be indicated on log above (Enter P & T Depths as appropriate)

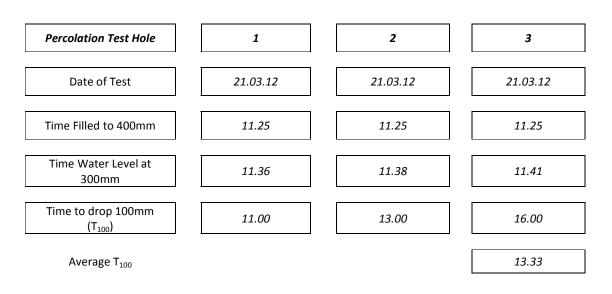
* See Appendix E for BS5930 Classification


** 3 samples to be tested on each horizon and results should be entered above for each horizon.

*** All signs of mottling should be recorded.

3.3a Percolation ("T" Test for Deep Subsoils and Water Table)

Step 1 Test Hole Preparation



Step 2 Pre-Soaking Test Holes

Date and Time Pre-	20.03.12	10.17	20.03.12	10.18	20.03.12	10.19
soaking Started	20.03.12	10.17	20.03.12	10.18	20.03.12	10.19

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3 Measuring T₁₀₀

If T_{100} >300mins then P Value >90 – site unsuitable for discharge to ground
If $T_{100} \le 210$ mins then go to Step 4
If $T_{100} \ge 210$ mins then go to Step 5

Percolation Test Hole		1 2				3			
Fill No.	Start Time at 300mm	Finish Time at 200mm	Δt (min)	Start Time at 300mm	Finish Time at 200mm	Δt (min)	Start Time at 300mm	Finish Time at 200mm	Δt (min)
1	11.37	11.50	13.00	11.39	11.54	15.00	11.42	11.59	17.00
2	11.51	12.06	15.00	11.55	12.13	18.00	12.00	12.19	19.00
3	12.07	12.26	19.00	12.14	12.36	22.00	12.20	12.43	23.00
Average ∆t			15.67			18.33			19.67
	Average <i>L</i> [Hole No.		3.91	Average <i>L</i> [Hole No.		4.58	Average <i>I</i> [Hole No.		4.91
Result of Test : T			4.47	min/25mm					
Comments									

4.0 CONCLUSIONS of SITE CHARACTERISATION:

Not suitable for Development		
Suitable for		Discharge Route
1. Septic tank System (Septic tank and soil percolation system)	✓	Groundwater
2. Secondary Treatment System		
a. Septic tank and intermittent filter system and polishing unit	✓	
b. Package Wastewater Treatment system and polishing unit	✓	

5.0 RECOMMENDATION:

Propose to install	The site is suitable for a conventional EN Certified septic tank and percolation area. Primary treatment within a two chamber septic tank designed and installed in accordance with Section 7.1.1 of the EPA CoP 2009 - 'Wastewater Treatment System and Disposal systems serving Single Houses'.
	· · · · · · · · · · · · · · · · · · ·
And discharge to	Groundwater

Trench Invert Level (m)0.20m

Site Specific Conditions (if any) e.g. special works, Site Improvement Works, Testing etc.

The tests showed that the site has a "T" value rating of 4.47min/25mm Groundwater level was not encountered in the trial hole. Bedrock level was not encountered in the trial hole.

The purpose built percolation area which is constructed on site has a minimum of 1.20m of suitable percolating material between the base of the lowest part of the percolation area at all times. The distribution pipes used in the system are smooth walled, have a diameter of 100mm have 7mm holes drilled in them 300mm apart, and each pipe is spaced parallel and 2000mm apart. The distribution pipes are bedded on 250mm depth of crushed stone (20 - 30 mm in size). The distribution pipes which are in place are surrounded and covered to a depth of 150mm of crushed stone which extends the full width of the percolation area. Before the distribution pipes were backfilled with the topsoil the crushed stone was covered with geotextile.

Anua's range of septic tanks for single houses and larger developments are designed and manufactured to the highest standards and are the only septic tank in Ireland with EN 12566-1 Certification

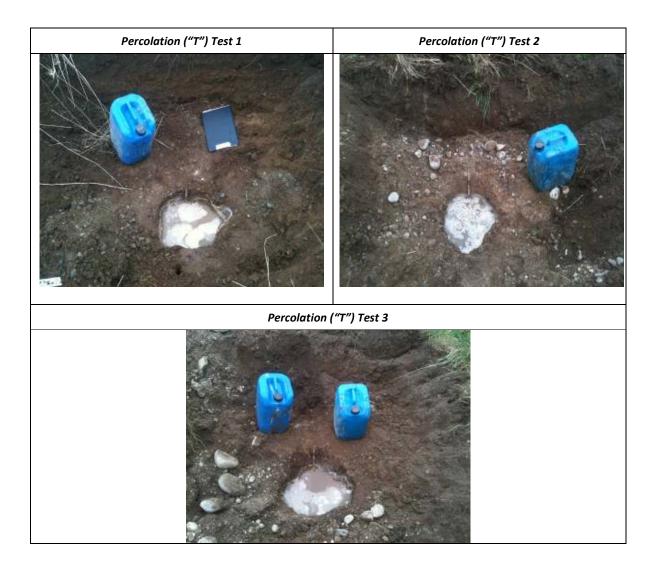
6.0 TREATMENT SYSTEM DESIGN DETAILS

STSTEM TIPE. Septic Tunk System (EN Certifica 12500) Recommendation bora Na Mona Septic Tunk									
Tank Capacity (m ³)	2.8m ³	Percolation Area			Мо	Mound Percolation Area			
		No. of Trei	nches	2	N	No. of Trenches			
		Length of Trenches (m) 15m			Lengt	h of Trenches (m) N/A		
		Invert Leve	el (m)	0.2m	In	Invert Level (m)			
SYSTEM TYPE: Package Se	wage Treatment S	ystem							
Filter Systems					Pacl	age Treatment	Systems		
Media Type	Area (m²)	Deep of Filter (m)		Invert Level (m)	Туре				
Sand/Soil	N/A	N/A		N/A		N/A			
Soil	N/A	N/A		N/A	Capacit	Capacity PE			
Constructed Wetland	N/A	N/A		N/A	Sizin	Sizing of Primary Compartme			
Other	N/A	N/A		N/A		N/A	m²		
SYSTEM TYPE: Tertiary Tre	eatment								
Polishing Filter: Surface Area (m^2) N/A			Pa	ackage Treatme	nt Systems: (Systems: Capacity (PE) N/A			
or Gravity Fed:				Constructed Wetland: Surface Area (m ²) N/A					
No. of Trenches		N/A							
Length of Trenches (m)		N/A							
Invert Level (m)		N/A							
DISCHARGE ROUTE:									
Groundwater		✓ Hydrau			ulic Loading Rate (I/m ² .d)				
Surface Water				Discharge Rate			0.024l/s		
TREATMENT STANDARDS:									
Treatment System Performance Standards (mg/l)			BOD	SS	NH3	Total N	Total P		
Conventional Septic Tank		<20	<30	<10	5 - 10	12.5			
QUALITY ASSURANCE:									
Installation & Commissioning				On-going Maintenance					
Recommend to be overseen by plant supplier.				Main	ntain and de-s	ludge annually			

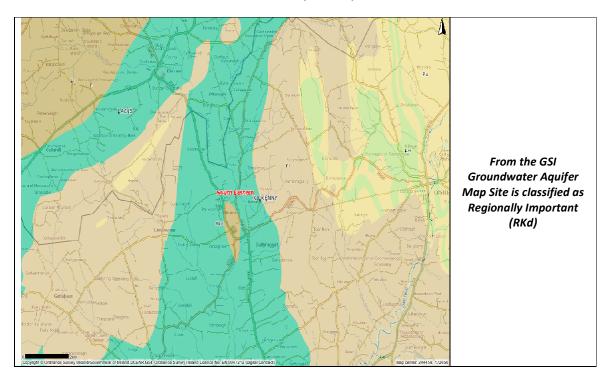
SYSTEM TYPE: Septic Tank System (EN Certified 12566) Recommendation Bord Na Mona Septic Tank

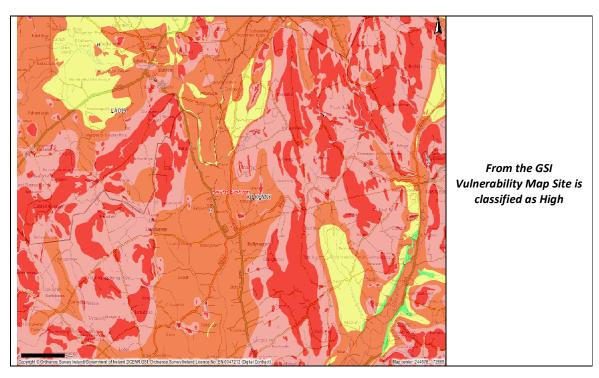
7.0 SITE ASSESSOR DETAILS									
Company:	Traynor Environmental Ltd								
Prefix:	Mr.	First Name:	Nev	in Surname:	Traynor				
Address:	Belturbet Business Park, Creeny, Belturbet, Co. Cavan.								
Qualifications	В	BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert.							
Date of Repo	ort: 3	0.03.12							
Phone: 049 95	22236 Fax:	049 9522808	E-mail:	nevin@traynorenvirc	onmental.com				
Indemnity Insu	rance Number:			AGD /11 / 109					

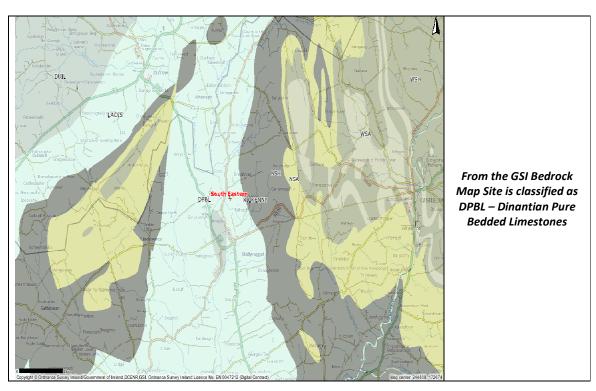
No.5 Tegne Signed:

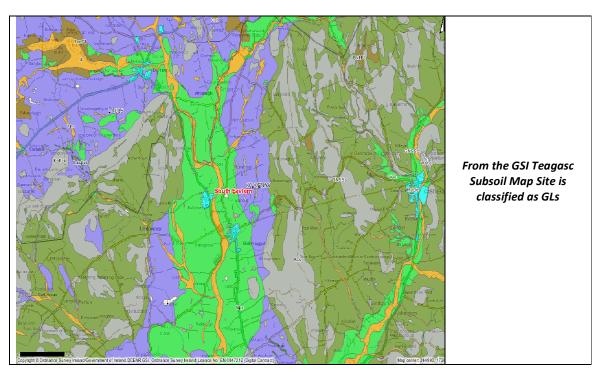

Nevin Traynor BSc. Env, H.Dip I.T, Cert SHWW, EPA/FAS Cert. For Traynor Environmental Ltd

8.0 SITE PHOTOGRAPHS






Groundwater/Aquifer Map


Vulnerability Map

Teagasc Subsoil Map

					2	San and a second
FETAC Turther Education and Turther Education and	National Skills Certificate	Awarded to Bronnta ar	Nevin Traynor	who has achieved the National Standards for a bhain Caighdeáin Náisiúnta amach maidir le Site Suitability Assessment for On-Site	Wastewater Treatment Systems	Leger & Leven Storn We High
			}	())	FINSC 003535

9.0 EPA/FAS CERTIFICATE

16

10.0 P.I INSURANCE

Griffiths&Armour

ENGINEERS IRELAND VERIFICATION OF PROFESSIONAL INDEMNITY INSURANCE

Insured:	Traynor Environmental Ltd
Address:	Belturbet Business Park Creeny Belturbet Co. Cavan
Description of Business:	Consulting Engineers
Policy Number and Name/Address of Lead Insurer:	A G Doré Syndicate 2526 at Lloyd's 4 th Floor, 70 Gracechurch Street London EC3V 0XL United Kingdom Policy No: AGD/11/109
Period of Insurance:	12 July 2011 to 11 July 2012
Renewal Date:	12 July 2012
Retroactive Date:	None
Limit of Indemnity any one claim:	A sum not less than €1,000,000 (separate aggregate limits of indemnity for all claims in the period relating to
	 pollution or contamination asbestos)
Excess applying to each and every claim:	€5,000
Total amount of Excess amounts payable for all claims during any one period of insurance:	€15,00
Does cover include Joint Venture Projects?	Yes
Does cover include Sub-Consultants?	Yes - Insured's liability
Is there a Sub-Consultant's Warranty?	None
Are there any Restrictions/Limitations/Warranties in relation to the Policy connected with the Project or Brief presented by the Local Authority, Health Board, Vocational Educational Committee, Regional Technical College or other Public Body?	None other than those which are standard to this class of insurance protection
If so, could you provide details:	

Signed:

For and on behalf of Griffiths & Armour Professional Risks GROUP OFFICES Liverpool London Manchester Glasgow Dublin Guernsey

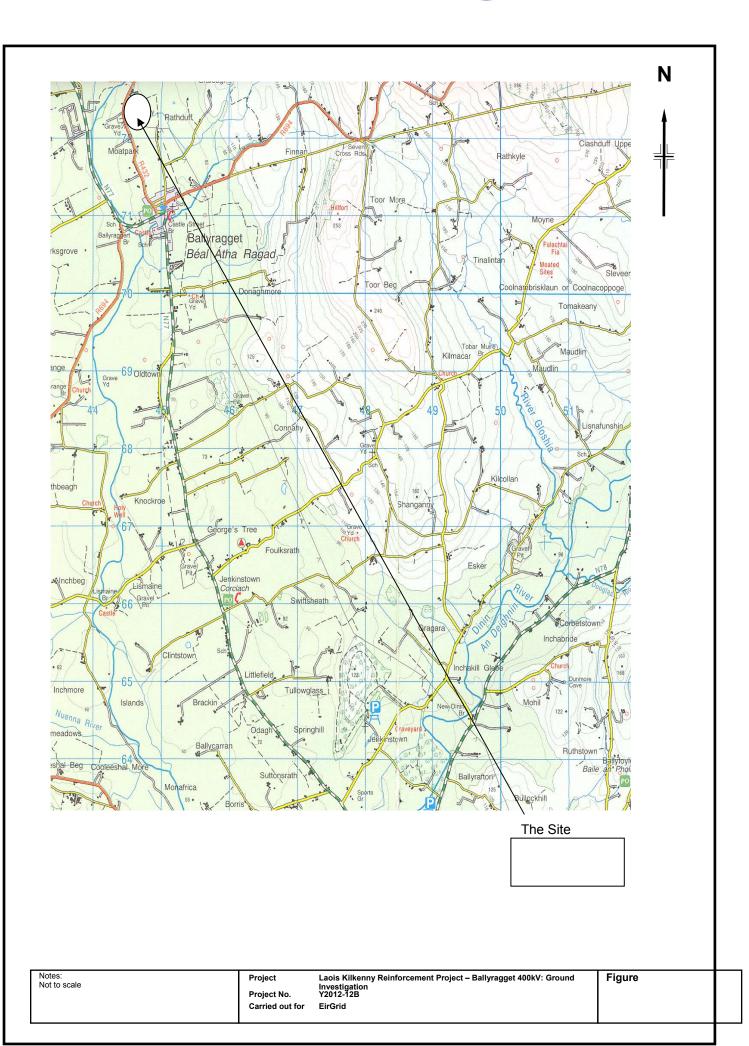
Date:

The policy is subject to the insuring agreements, exclusions, conditions and declarations contained therein. The above is accurate at the date of signature. No obligation is imposed herein on the signatory to advise of any alteration.

13 July 2011

Disclosure - Verification of PII for Engineers - Ineland - AG Doné - March 2011 - apolt

Page 1 of 1



ENCLOSURE H DRAWINGS

Site Location Plan Site Plan H1 H2

Site Location Plan

🕼 Soil Mechanics

\angle									
Figure No D2	Sheet Size Scale 1:250	Date Drawn By AW	∯ Soil Mecha	client EirGrid	AOIS KILKENNY REINF PROJECT -BALLYR	Title SITE PLAN	Scale: 1:250 0 2.5m 5 7.5 10 12.5	Denotes Borehole Location Denotes CBR Test Location Denotes Trial Pit Location	LEGEND TO SYMBOLS
Rev O	Project No Y2012-12B	Approv. By AJ	anics		NFORCEMENT /RAGGET		CT		